B.G. Tatarsky1, А.А. Filatov2, Najjar Tammam3
1,3 Moscow Aviation Institute (National Research University) (Moscow, Russia)
1,2 MIREA; JSC «Concern of radio engineering «Vega» (Moscow, Russia)
Features of formation of trajectory signal in synthesis of artificial aperture, formed due to rotation of phase center of receiving antenna, in distributed radar system, consisting of receiving and stationary transmitting modules spaced apart in space, rotating along circumference. It is shown that the nature of the distance change «transmitting module – receiving module» obeys the harmonic law, which determines the nature of the change in the phase of the trajectory signal and affects the pattern of the formation of the reference function processing systems. As a result, the envelope of the output response of the optimal trajectory signal processing system coincides in shape with the Bessel function of the first kind of zero order.
By mathematical modeling, it is shown that the linear azimuth resolution of this distributed radar, determined by the output response of an optimal trajectory signal processing system, is twice as bad as that of a similar system when combining the receiving and transmitting modules. At the same time, the range of the distributed system is longer. The quantitative increase in range depends on the ratio of the directional factors of the transmitting and receiving antennas. Artificial aperture in distributed radar is formed only due to rotational motion of phase center of receiving antenna, and size of area of earth surface, detailed radar image of which is formed, is determined by beam width of transmitting antenna.
Tatarsky B.G., Filatov А.А., Najjar Tammam Synthesizing radar aperture while rotating the phase center of the receiver antenna with a fixed spatial position of the transmitter module. Achievements of modern radioelectronics. 2021. V. 75. № 12. P. 22–31. DOI: https://doi.org/10.18127/j20700784-202112-02 [in Russian]
- Dudnik P.I., Gerasimov A.A., Il'chuk A.R., Kondratenkov G.S., Tatarskiy B.G. Aviatsionnye radiolokatsionnye kompleksy i sistemy. Pod red. P.I. Dudnika. M.: VVIA imeni professora N.E. Zhukovskogo. 2006. [in Russian]
- Aviatsionnye sistemy radiovideniya. Monografiya. Pod red. G.S. Kondratenkova. M.: Radiotekhnik. 2015. [in Russian]
- Tatarskiy B.G., Yasentsev D.A. Analiz osobennostey formirovaniya i obrabotki traektornogo signala v RLS s sintezirovaniem apertury antenny pri vrashchenii ee fazovogo tsentra. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2008. T. 6. № 9. S. 39–43. [in Russian]
- Koshelev V.I., Kirdyashkin V.V., Sychev M.I., Yasentsev D.A. Aktual'nye voprosy radiolokatsii. Pod red. P.A. Bakuleva. M.: MAI. 2016. [in Russian]
- Klausing H., Bartsch N., Boesswetter C. A MM-Wave SAR Design for Helicopter Application (ROSAR). 16th European Microwave Conference. Dublin, Ireland. 1986. P. 317–328.
- Kreitmair-Steck W., Klausing H., Wolframm A. P., Weiss G. Heliradar – a synthetic aperture radar with rotating antennas. 23rd European Microwave Conference. Madrid, Spain. 1993. P. 972–974.
- Dong Li, Hongqing Liu, Yong Liao, Xiaogang Gui A Novel Helicopter-Borne Rotating SAR Imaging Model and Algorithm Based on Inverse Chirp-Z Transform Using Frequency-Modulated Continuous Wave. IEEE Geoscience and Remote Sensing Letters. August 2015. V. 12. № 8. P. 1625–1629.
- Wen-Jun Li , Guisheng Liao, Shengqi Zhu, Jingwei Xu A Novel Helicopter-Borne RoSAR Imaging Algorithm Based on the Azimuth ChirpZ transform. IEEE Geoscience and Remote Sensing Letters. February 2019. V. 16. № 2. P. 226–230.
- Jun Zhang, Guisheng Liao, Shengqi Zhu, Jingwei Xu, Feiyang Liu Wavenumber-domain autofocus algorithm for helicopter-borne rotating synthetic aperture radar. IET Signal Process. 2018. V. 12. № 3. P. 294–300.
- Kompleksy s bespilotnymi letatel'nymi apparatami. V 2-kh knigah. Kn.1. Printsipy postroeniya i osobennosti primeneniya kompleksov s BLA. Monografiya. Pod red. V.S. Verby, B.G. Tatarskogo. M.: Radiotekhnika. 2016. [in Russian]
- Tatarskiy B.G., Maystrenko E.V. Sintezirovanie apertury pri uchete postupatel'nogo i vrashchatel'nogo dvizheniya fazovogo tsentra antenny. Antenny. 2010. № 9 (160). S. 15–23. [in Russian]
- Tikhonov V.I. Optimal'nyy priem signalov. M.: Radio i svyaz'. 1983. [in Russian]