350 rub
Journal Achievements of Modern Radioelectronics №10 for 2021 г.
Article in number:
Use of holographic subsurface radars to survey cultural heritage sites
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202110-02
UDC: 621.396.962.21
Authors:

A.S. Bugaev1, S.I. Ivashov2, V.V. Razevig3

1 Moscow Institute of Physics and Technology (Moscow region, Russia)

2,3 Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

Nowadays increased attention to preservation and the restoration, if there is need, of objects of cultural heritage of mankind requires the development and implementation of new technical means of diagnostics and non-destructive testing, including those operating in the microwave range. One of these tools, which has found wide application in recent years especially in archeology, are subsurface radars. Classical subsurface radars using pulsed signals allow sounding soils in some cases to depths of 10 m. But their resolution is clearly insufficient for many practical applications. An alternative to their use is continuous wave holographic subsurface radars, which, although they are inferior to pulsed ones in sounding depth, are used in the examination of building structures, nondestructive testing of dielectric composite materials, as well as cultural objects. In this work, among other applications, the possibility of using radio holography to survey the Cheops pyramid, Egypt is considered. This task is especially urgent in light of the reports that have appeared on the alleged detection of previously unknown voids in the pyramid body using muon sensors. Given that this method is indirect and in the absence of the possibility of drilling or making passes, independent confirmation is required based on other nondestructive testing methods.

Pages: 24-38
For citation

Bugaev A.S., Ivashov S.I., Razevig V.V. Use of holographic subsurface radars to survey cultural heritage sites. Achievements of modern radioelectronics. 2021. V. 75. № 10. P. 24–38. DOI: https://doi.org/10.18127/j20700784-202110-02 [in Russian]

References
  1. Finkelstein M.I. Subsurface radar. Telecomm. Radio Eng. Part 2. V. 32. 1977. P. 18–26.
  2. Daniels D.J. Surface-penetrating radar. Pub. by IEE. London. 1996.
  3. Finkel'shteyn M.I., Karpukhin V.I., Kutev V.A., Metelkin V.N. Podpoverkhnostnaya radiolokatsiya. Pod red. M.I. Finkel'shteyna. M.: Radio i svyaz'. 1994. [in Russian]
  4. Finkel'shteyn M.I., Kutev V.A., Zolotarev V.P. Primenenie radiolokatsionnogo podpoverkhnostnogo zondirovaniya v inzhenernoy geologii. Pod red. M.I. Finkel'shteyn. M.: Nedra. 1986. [in Russian]
  5. Ivashov S.I., Razevig V.V., Vasiliev I.A., Zhuravlev A.V., Bechtel T.D., Lorenzo Capineri Holographic Subsurface Radar of RASCAN Type: Development and Applications. IEEE Journal of Selected Topics in Earth Observations and Remote Sensing. V. 4. № 4. December 2011. P. 763–778. DOI: 10.1109/JSTARS.2011.2161755.
  6. Gabor D. A new microscopic principle. Nature. 161. 1948. P. 777–778. DOI: 10.1038/161777a0.
  7. Junkin G., Anderson A.P. Limitations in microwave holographic synthetic aperture imaging over a lossy half-space. Communications, Radar and Signal Processing. IEE Proceedings F. V. 135. № 4. August 1988. P. 321–329. DOI: 10.1049/ip-f-1.1988.0039.
  8. Razevig V.V., Ivashov S.I., Vasiliev I.A., Zhuravlev A.V., Bechtel T., Capineri L. Advantages and Restrictions of Holographic Subsurface Radars. Experimental evaluation. Proceedings of the XIII International Conference on Ground Penetrating Radar, Lecce, Italy. 21–25 June 2010. P. 657–662. DOI:10.1109/ICGPR.2010.5550241.
  9. Laboratoriya distantsionnogo zondirovaniya RSLab. URL: http://www.rslab.ru/russian/product [in Russian]
  10. Ivashov S.I., Razevig V.V., Sheyko A.P., Vasilyev I.A. A Review of the Remote Sensing Laboratory's Techniques for Humanitarian Demining. Proceedings of International Conference on Requirements and Technologies for the Detection, Removal and Neutralization of Landmines and UXO, EUDEM2-SCOT-2003. 15–18 September 2003. Vrije Universiteit Brussel, Brussels, Belgium. V. 1. P. 3–8.
  11. Song X.J., Su Y., Huang C.L., Lu M., Zhu S.P. Landmine Detection with Holographic Radar. 16th International Conference of Ground Penetrating Radar (GPR 2016). Hong Kong. 13–16 June 2016. P. 1–4. DOI: 10.1109/ICGPR.2016.7572660.
  12. Pochanin G., Capineri L., Bechtel T., Ruban V., Falorni P., Crawford F., Ogurtsova T., Bossi L. Radar Systems for Landmine Detection: Invited Paper. 2020 IEEE Ukrainian Microwave Week (UkrMW), Kharkiv, Ukraine. 2020. P. 1118–1122. DOI: 10.1109/UkrMW49653.2020.9252789.
  13. Ivashov S.I., Makarenkov V.I., Razevig V.V., Sablin V.N., Sheyko A.P., Vasiliev I.A. Concrete floor inspection with help of subsurface radar. Eight International Conference on Ground-Penetrating Radar, GPR'2000. May 23–26, 2000. University of Queensland, Gold Coast, Queensland, Australia. P. 552–555. DOI: 10.1117/12.383629.
  14. Ivashov S.I., Razevig V.V., Zhuravlev A.V., Bechtel T., Chizh M.A. Comparison of Different NDT Methods in Diagnostics of Rocket Cryogenic Tanks Thermal Protection Coating. 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel. 2019. P. 1–5. DOI: 10.1109/COMCAS44984.2019.89581577.
  15. Kharkovsky S., Zoughi R. Microwave and millimeter wave nondestructive testing and evaluation. IEEE Instrum. Meas. Mag. April 2007. 10(2). P. 26–38. DOI: 10.1109/MIM.2007.364985.
  16. Zhang X., Liang J., Wang N., Chang T., Guo Q., Cui H. Broadband Millimeter-Wave Imaging Radar-Based 3-D Holographic Reconstruction for Nondestructive Testing. IEEE Transactions on Microwave Theory and Techniques. March 2020. V. 68. № 3. P. 1074–1085. DOI: 10.1109/TMTT.2019.2948349.
  17. Capineri L., Falorni P., Borgioli G., Bulletti A. et al. Application of the RASCAN holographic radar to cultural heritage inspections. Archaeological Prospection. 2009. 16. P. 218–230. DOI: 10.1002/arp.360.
  18. Zhuravlev A., Razevig V., Chizh M., Ivashov S. Imaging of concealed objects on moving persons by creating synthetic aperture due to their natural motion. Proceedings of the IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2017). Tel-Aviv, Israel. 13–15 November 2017. P. 1–4. DOI: 10.1109/COMCAS.2017.8244743.
  19. Razevig V., Ivashov S., Chizh M., Zhuravlev A., Capineri L. Influence of Electrical Properties of Media on Reconstruction of Microwave Holograms Recorded by Subsurface Radar. 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). Tel-Aviv, Israel. 2019. P. 1–5. DOI: 10.1109/COMCAS44984.2019.8958377.
  20. Razevig V., Ivashov S., Vasiliev I., Zhuravlev A. Comparison of Different Methods for Reconstruction of Microwave Holograms Recorded by the Subsurface Radar. Proceeding of the 14th International Conference on Ground Penetrating Radar. 4–8 June 2012. Shanghai, China. P. 335–339. DOI: 10.1109/ICGPR.2012.6254884.
  21. Chaban A., Deiana R., Tornari V. Wall Mosaics: A Review of On-Site Non-Invasive Methods, Application Challenges and New Frontiers for Their Study and Preservation. Journal of Imaging. 2020. 6(10). 108. DOI: 10.3390/jimaging6100108.
  22. Capineri L., Falorni P., Ivashov S. et al. Combined holographic subsurface radar and infrared thermography for diagnosis of the conditions of historical structures and artworks. Near Surface Geophysics. 2010. 8. P. 355–364. DOI: 10.3997/1873-0604.2010005.
  23. Razevig V.V., Ivashov S.I., Sheyko A.P., Vasilyev I.A., Zhuravlev A.V. An example of holographic radar using at restoration works of historical building. Progress In Electromagnetics Research Letters. V. 1. P. 173–179, 2008. DOI: 10.2528/PIERL07120603.
  24. Ivashov S., Capineri L., Bechtel T., Razevig V., Zhuravlev A., Falorni P. Use of holographic subsurface radar analysis in the preservation and restoration of cultural heritage objects. Surface Topography: Metrology and Properties. 2019. V. 7. № 4. 045017.  P. 1–11. DOI: 10.1088/2051-672X/ab4fa2.
  25. Bechtel T., Capineri L., Falorni P. and etc. Detection of Latent Damage from Insect Activity in Wooden Structures through the Use of Holographic Subsurface Radar. In PIERS Proceedings, Marrakesh, Morocco. March 2011. P. 95.
  26. Capineri L., Zandonai F., Inagaki M., Razevig V. et al. RASCAN holographic radar for detecting and characterizing dinosaur tracks. Proceedings of the 2013 7th International Workshop on Advanced Ground-Penetrating Radar. July 02–05, 2013. Nantes, France. P. 71–76. DOI: 10.1109/IWAGPR.2013.6601553.
  27. Inagaki M., Bechtel T., Capineri L., Ivashov S., Windsor C. A small difference of permittivity observed in a holographic radar image of dinosaur footprints. Conference: Society of Exploration Geophysics Japan, Tokyo, Lapan, Volume: 128th Conference, Spring 2013, June. P. 117–120. URL: https://jglobal.jst.go.jp/detail?JGLOBAL_ID=201302261927363642.
  28. Galton P.M., Farlow J.O. Dinosaur State Park, Connecticut, USA: History, footprints, trackways exhibits. Zubia. Nr. 21. 2003. P. 129–174.
  29. Ivashov S., Razevig V., Zhuravlev A., Chizh M., Bechtel T., Capineri L., Inagaki M. MW Holographic Imaging System for Detection of Hidden Dinosaur Tracks. The 38th PIERS in St Petersburg, Russia, 22–25 May, 2017. P. 3241–3246. DOI: 10.1109/PIERS.2017.8262316.
  30. Luca Bossi, Pierluigi Falorni, Colin Windsor et al. The imaging of subsurface crocodile remains in a limestone slab using holographic radar. GPR 2020 – 18th International Conference on Ground Penetrating Radar, Golden, Colorado USA. June 14–19. 2020. P. 6–9. DOI: 10.1190/gpr2020-003.1.
  31. Kunihiro Morishima, Mitsuaki Kuno, Akira Nishio et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature, 21 December 2017. V. 552. P. 386–390. DOI:10.1038/nature24647.
  32. Ivashov S., Bechtel T., Razevig V., Capineri L., Inagaki M. A proposed radar method for non-destructive investigation of Egyptian pyramids. Insight: Non-Destructive Testing and Condition Monitoring. January 2021. V. 63. № 1. P. 12–19. DOI: 10.1784/insi.2021.63.1.12.
Date of receipt: 25.08.2021
Approved after review: 10.09.2021
Accepted for publication: 27.09.2021