350 rub
Journal Achievements of Modern Radioelectronics №8 for 2020 г.
Article in number:
Radar image of the false mark
Type of article: scientific article
DOI: 10.18127/j20700784-202008-01
UDC: 623.624.9
Authors:

Yu.А. Skobelev – Engineer,

JSR «Oktava» (Novosibirsk)

Е-mail: yaskob@mail.ru

Abstract:

SAR implements space-time processing based on coherent accumulation of reflected signals, which causes low efficiency of SAR counteraction by masking these signals. Therefore, developers of electronic warfare tend to use countermeasures that make it difficult to identify and recognize observed objects by distorting or destroying their radar images. Known methods of forming masking images require many channels relay signals SAR, which complicates the implementation of simulators radar targets even on modern element base. In the article it is analyzed the radar false mark created using a patented method of radar image simulation using a small number of retransmission channels. This mark can be used to counteract the identification and recognition of observed SAR  objects by masking their images. 

In this article it is discussed the case of the formation of a false mark during the simulation of a point target by random modulation of the phase of the retransmitted signals according to the law of uniform density in the range κπ, where κ is an integer not equal to zero. In this case, the image of the simulated point target disappears, and the intensity of the image of this target is distributed over the territory of the false mark. In this article it is given the analytical substantiation of the range of change of the uniformly distributed random component of the phase of the simulated SAR signals. An analytical substantiation of the magnitude of this range is based on work Skobeleva Y.A. «The image of the point target formed on signals with the broken coherence». Using these materials, it is established also that the false mark occupies the territory in the form of an ellipse, the sizes of which is determined by the resolution of SAR in the longitudinal and transverse directions, as well as by the number of pulses involved in the formation of a point target for each of the coordinates.

The theoretical values of the integral and average normalized intensity of the image of the point target are calculated for further comparison with the results of analytical modeling of the false mark image. The technique of calculating and statistical processing of intensity of false mark image was described. Statistical processing of images of nine different variants of the false mark is performed.  The coincidence of the results of analytical modeling and theoretical calculations of the integral and average normalized intensity of the false mark image is confirmed. The distribution of the image intensity from the relative distance to the center of each of the variants of the false mark is obtained. The intensity distribution is approximated by the dependence common for all variants of the false mark.

Pages: 5-21
For citation

Skobelev Yu.А. Radar image of the false mark. Achievements of modern radioelectronics. 2020. V. 74. № 8. P. 5–21.

DOI: 10.18127/j20700784-202008-01. [in Russian]

References
  1. Gremyachevskiy S.S., Shlyakhin V.M., Yakovlev Yu.V. Otsenka effektivnosti maskiruyushchikh i imitiruyushchikh pomekh radiolokatoram s sintezirovannoy antennoy. Radiotekhnika. 1994. № 12. S. 3–5. [in Russian]
  2. Likhachev V.P., Shlyakhin V.M. Aktivnoe «gashenie» radiolokatsionnykh izobrazheniy tseley, formiruemykh s sintezirovaniem apertury, posredstvom modulirovannykh pomekh. Izv. VUZov. Ser. Radioelektronika. 2002. № 3. S. 35–41. [in Russian]
  3. Arapov D.P., Likhachev V.P., Shlyakhin V.M. Osobennosti prednamerennogo iskazheniya radiolokatsionnykh izobrazheniy tseley, formiruemykh RLS s sintezirovaniem apertury antenny. Izv. VUZov. Ser. Radioelektronika. 2002. № 4. S. 68–75. [in Russian]
  4. Kupryashkin I.F., Likhachev V.P. Maskirovanie radiolokatsionnykh izobrazheniy prostranstvenno-protyazhennykh ob«ektov mul'tiplikativnymi retranslyatsionnymi pomekhami. Izv. VUZov. Ser. Radioelektronika. 2004. № 9. S. 62–67. [in Russian]
  5. Patent RU №2486537 S2. MPK G01S 7/38 (2006.01), G01S 13/90 (2006.01). Ustroystvo iskazheniya radiolokatsionnogo izobrazheniya ob«ekta. Kupryashkin I.F., Likhachev V.P., Likhacheva N.V., Popov S.S. Zayavka: 2011132767/07, 03.08.2011. Opublikovano: 27.06.2013 Byul. №18. [in Russian]
  6. Patent RU №2486538 S2. MPK G01S 7/38 (2006.01), G01S 13/90 (2006.01). Ustroystvo iskazheniya radiolokatsionnogo izobrazheniya ob«ekta. Kupryashkin I.F., Likhachev V.P., Nagornyy M.S., Semenov V.V., Fedotov A.A. Zayavka: 2011133254/07, 08.08.2011. Opublikovano: 21.06.2013. № 18. [in Russian]
  7. Patent RU №2622904 S1. MPK G01S 13/90 (2006.01), G01S 7/38 (2006.01). Sposob iskazheniya radiolokatsionnogo izobrazheniya v kosmicheskoy radiolokatsionnoy stantsii s sintezirovannoy aperturoy antenny. Kupryashkin I.F., Likhachev V.P., Seleznev D.A., Usov N.A. Zayavka: 2016113470, 07.04.2016. Opublikovano: 21.06.2017. № 18. [in Russian]
  8. Karmanov Yu.T. Problemy i perspektivy razvitiya tsifrovykh ustroystv zapominaniya i vosproizvedeniya radiosignalov. Tsifrovye radioelektronnye sistemy. 2002–2004. V. 5. S. 7–14. [in Russian]
  9. Skobelev Yu.A. Izobrazhenie tochechnoy tseli, formiruemoe po signalam s narushennoy kogerentnost'yu. Elektromagnitnye volny i elektronnye sistemy. 2017. № 6. S. 29–43. [in Russian]
  10. Kondratenkov G.S., Frolov A.Yu. Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli. Ucheb. posobie dlya vuzov. Pod red. G.S. Kondratenkova. M.: Radiotekhnika. 2005. [in Russian]
  11. Skobelev Yu.A. Potentsial'noe razreshenie radiolokatsionnykh sistem s sintezirovannoy aperturoy antenny. Elektromagnitnye volny i elektronnye sistemy. 2009. № 2. S. 35–43. [in Russian]
Date of receipt: 23 декабря 2019 г.