350 rub
Journal Achievements of Modern Radioelectronics №3 for 2020 г.
Article in number:
Multilevel magnetic recording: technologies, materials, prospects
Type of article: scientific article
DOI: 10.18127/j20700784-202003-08
UDC: 539.216.2
Authors:

V.G. Shadrov – Ph.D. (Phys.-Math.), Leading Research Scientist, 

Scientific-Practical Materials Research Centre

A.E. Dmitrieva – Junior Research Scientist, 

Scientific-Practical Materials Research Centre

A.V. Boltushkin – Ph.D. (Phys.-Math.), Leading Research Scientist, 

Scientific-Practical Materials Research Centre

E-mail: nemtsevich@ifttp.bas-net.by

Abstract:

Multi-level (ML-3D) magnetic recording technology involves selective recording onto two or more recording layers, significantly  increasing the surface recording density, and in the long term seems to be one of the most promising solutions to the problem of  increasing the capacity of information storage devices.

The purpose of the work is to analyze the main parameters and technologies of multilevel magnetic recording, in particular, the use of microwave assisting and antiferromagnetically coupled media, as well as the materials used and alternative concepts of multilevel recording.

The basic parameters and technologies of multilevel magnetic recording are considered, in particular, the use of microwave assisting and antiferromagnetically coupled media, as well as the materials used and alternative concepts of multilevel recording. Multi-level (ML-3D) magnetic recording technology can significantly increase surface density and recording speed.

Pages: 60-70
References
  1. Sanders D., Valenzuela S.O., Makarov D., Marrows C.H. etc. The 2017 magnetism roadmap // J. Phys. D.: Appl. Phys. 2017. V. 50. P. 363001-1-33.
  2. Kief M.T., Victora R.Y. Materials for heat-assisted magnetic recording // MRS Bull. 2018. V. 43. P. 87–92.
  3. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media // Chin. Phys. B. 2014. V. 23. 036802-1-124.
  4. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media // IEEE Trans. Magn. 2009. V. 45. P. 917–923.
  5. Okamoto S., Kikuchi N., Furuta M., Kitakami O., Shimatsu T. Microwave assisted magnetic recording technologies and related physics // J. Phys. D: Appl. Phys. 2015. V. 48. P. 353001-1-18.
  6. Mallary M., Srinivasan K., Bertero G., Wolf D., Kaiser C. etc. Head and media challenges for 3 Tb/in2 microwave assisted magnetic reсоrding // IEEE Trans. Magn. 2014. V. 50. P. 3001008-1-9.
  7. Gavrila H. Achievements and expected issues in heat assisted magnetic recording // J. Engineer. Sci. Innov. 2017. V. 2. P. 16–26.
  8. Weller D., Parker G., Mosendz O., Champion E. etc. A HAMR media technology roadmap to an areal density of 4 Tb/in2 // IEEE Trans. Magn. 2014. V. 50. P. 3100108-1-8.
  9. Шадров В.Г., Дмитриева А.Э., Болтушкин А.В. Структурированные среды магнитной записи // Успехи современной радиоэлектроники. 2018. № 1. С. 9–19.
  10. Amos N., Butler J., Lee B., Shachar M. H., Hu B. etc. Multilevel-3D bit patterned magnetic media with 8 signal levels per nanocolumn // PLoS One. 2012. V. 7. Р. e40134-1-8.
  11. Parkin S. S. P., Hayashi M., Thomas L. Magnetic domain-wall racetrack memory // Science. 2008. V. 320. P. 190–194.
  12. Lavrijsen R., Lee J.-H., Fernández-Pacheco A., Petit D., Mansell R., Cowburn R.P. Magnetic ratchet for three-dimensional spintronic memory and logic // Nature. 2013. V. 493. P. 647–650.
  13. Albrecht M., Hu G., Moser A., Hellwig O., Terris B. D. Magnetic dot arrays with multiple storage layers // J. Appl.Phys. 2005. V. 97. P. 103910-1-7.
  14. Baltz V., Landis S., Rodmacq B., Dieny B. Multilevel magnetic media in continuous and patterned films with out of plane magnetization // J. Magn. Magn. Mater. 2005. V. 290–291. P. 1286–1289.
  15. Baltz V., Bollero A., Rodmacq B., Dieny B., Jamet J.P., Ferré J. Multilevel magnetic nanodot arrays with out of plane anisotropy: the role of intra-dot magnetostatic coupling //Eur. Phys. J. Appl. Phys. 2007. V. 39. № 1. P. 33–38.
  16. Jubert P.O., Vanhaverbeke A., Bischof A., Allenspach R. Recording at large write currents on obliquely evaporated medium and application to a multilevel recording scheme // IEEE Trans. Mag. 201046 . V. 12. P. 4059–4065.
  17. Khizroev S., Hijazi Y., Amos N., Chomko R., Litvinov D. Physics considerations in the design of three dimensional and multilevel magnetic recording // J. Appl. Phys. 2006. V. 100. P. 063907-1-6.
  18. Kaidatzis A., Giannopoulos G., Varvaro G., Dimitrakopulos G. etc. Investigation of magnetic coupling in FePt/spacer/FePt trilayers // J. Phys. D: Appl. Phys. 2017. V. 50. P. 445002-1-8.
  19. Winkler G., Suess D., Lee J., Fidler J. etc. Microwave-assisted three-dimensional multilayer magnetic recording // Appl. Phys. Lett. 2009. V. 94. P. 232501-1-3.
  20. Li S., Livshitz B., Bertram H. N., Fullerton E. E., Lomakin V. Microwave-assisted magnetization reversal and multilevel recording in composite media // J. Appl. Phys. 2009. V. 105. P. 07B909-1-4.
  21. Suto H., Nagasawa T., Kudo K., Kanao T., Mizushima K., Sato R. Layer-selective switching of a double-layer perpendicular magnetic nanodot using microwave assistance // Phys. Rev. Appl. 2016. V. 5. P. 014003-1-8.
  22. Tanaka T., Otsuka Y., Furomoto Y., Matsuyama K., Nozaki Y. Selective magnetization switching with microwave assistance for three-dimensional magnetic recording // J. Appl. Phys. 2013. V. 113. P. 143908-1-3.
  23. Suto H., Kudo K., Nagasawa T., Kanao T., Mizushima K., Sato R. Three-dimensional magnetic recording using ferromagnetic resonance // Jpn. J. Appl. Phys. 2016. V. 55 P. 07MA01-1-10.
  24. Okamoto S., Kikuchi N., Kitakami O. Magnetization switching behavior with microwave assistance // Appl. Phys. Lett. 2008. V. 93. 102506-1-5.
  25. Okamoto S., Igarashi I., Kikuchi N., Kitakami O. Microwave assisted switching mechanism and its stable switching limit // J. Appl. Phys. 2010. V. 107. P.123914-1-4.
  26. Kief  M.T., Victora R.H. Observation of microwave-assisted magnetization reversal in perpendicular recording media // Appl. Phys. Lett. 2013. V. 103. P. 042413-1-3.
  27. Rivkin K., Benakli M., Tabat N., Yin H. Physical principles of microwave assisted magnetic recording // J. Appl. Phys. 2014. V. 115. 214312-1-12.
  28. Nozaki Y., Narita N., Tanaka T., Matsuyama K. Microwave assisted magnetization reversal in a Co/Pd multilayer with perpendicular magnetic anisotropy // Appl. Phys. Lett. 2009. V. 95. P. 082505-1-4.
  29. Boone C.T., Katine J.A., Marinero E.E., Pisana S., Terris B.D. Microwave-assisted magnetic reversal in perpendicular media // IEEE Magn. Lett. 2012. V. 3. P. 3500104-1-4.
  30. Nozaki Y., Kato A., Noda K., Kanai Y., Tanaka T., Matsuyama K. Micromagnetic study on microwave-assisted magnetic recording in perpendicular medium with intergrain exchange coupling // J. Appl. Phys. 2011. V. 109. P. 123912-1-5.
  31. Zhang M., Zhou T., Yuan Z. Analysis of switchable spin-torque oscillator for microwave assisted magnetic recording // Adv. Cond. Matter. Phys. 2015. V. 2015. P. 457456-1-6.
  32. Chen T., Dumas R. K., Eklund A., Muduli P.K. etc. Spin-torque and spin-Hall nano-oscillators // Proc. IEEE. 2016. V. 104. P. 1919-1-24.
  33. Locatelli N., Hamadeh A., Araujo F. A., Belanovsky A.D. etc. Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators // Détails Scientific Reports. 2015. V. 5. P. 17039-1-5.
  34. Hirohata A., Takahashi K. Future perspectives for spintronic devices // J. Phys.D.: Appl. Phys. 2014. V. 47. P. 193001-1-40.
  35. Hirohata A., Sukegawa H., Yanagihara H., Zutic I., Seki T., Mizukami S., Swaminathan R. Roadmap for emerging materials for spintronic device applications // IEEE Trans. Magn. 2015. V. 51. P. 1–11.
  36. Suto H., Nagasawa T., Kudo K., Mizushima K., Sato R. Nanoscale layer-selective readout of magnetization directionfrom a magnetic multilayer using a spin-torque oscillator // Nanotechnology. 2014. V. 25. P. 245501-1-4.
  37. Yang T., Suto H., Nagasawa T., Kudo K., Mizushima K., Sato R. Readout method from antiferromagnetically coupled perpendicular magnetic recording media using ferromagnetic resonance // J. Appl. Phys. 2013. V. 114. P. 213901-1-4.
  38. Kudo K., Suto H., Nagasawa T., Mizushima K., Sato R. Resonant magnetization switching induced by spin torque-driven oscillations and its use in three-dimensional magnetic storage applications // Appl. Phys. Express. 2015. V. 8. P. 103001-1-4.
  39. Tanaka T., Kato A., Furomoto Y., MdNor A.F., Kanai Y., Matsuyama K. Microwave-assisted magnetic recording simulation on exchange-coupled composite medium // J. Appl. Phys. 2012. V. 111. P. 07B711-1-5.
  40. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted shingled magnetic recording // IEEE Trans. Magn. 2015. V. 51. P. 1–4.
  41. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted magnetic recording on dual-thickness and dual-layer bit patterned media // IEEE Trans. Magn. 2016. V. 51. P. 253756-1-6.
  42. Wang Y.Y., Song C., Zhang J.Y., Pan F. Spintronic materials and devices based on antiferromagnetic metals // Progr. Nat. Sci.: Mat. Int. 2017. V. 27. P. 208–216.
  43. Wang X., Gao K.Z., Hohlfeld J., Seigler M. Switching field distribution and transition width in energy assisted magnetic recording // Appl. Phys. Lett. 2010. V. 97. P. 102502-1-3.
  44. Mizushima K., Kudo K., Nagasawa T., Sato R. Signal-to-noise ratios in high-signal-transfer-rate read heads composed of spin-torque oscillators // J. Appl. Phys. 2010. V. 107. P. 063904-1-4.
  45. Kudo K., Nagasawa T., Mizushima K., Suto H., Sato R. Numerical simulation on temporal response of spin-torque oscillator to magnetic pulses  //Appl. Phys. Express  2010. V. 3. P. 043002-1-3.
  46. Braganca P. M., Gurney B. A., Wilson B. A., Katine J. A., Maat S., Childress J.R. Nanoscale magnetic field detection using a spin torque oscillator // Nanotechnology 2010. V. 21. P. 235202-1-10.
  47. Nagasawa T., Suto H., Kudo K., Yang T., Mizushima K., Sato R. Delay detection of frequency modulation signal from a spin-torque oscillator under a nanosecond-pulsed magnetic field // J. Appl. Phys. 2012. V. 111. P. 07C908-1-5.
  48. Maehara H., Kubota H., Suzuki Y., Seki T., Nishimura K. etc. Large emission power over 2µW with high Q factor obtained from nanocontact magnetic-tunnel-junction-based spin torque oscillator // Appl. Phys. Express 2013. V. 6. P. 113005-1-3.
  49. Maehara H., Kubota H., Suzuki Y, Seki T., Nishimura K. etc. High Q factor over 3000 due to out-of-plane precession in nano-contact spin-torque oscillator based on magnetic tunnel junctions // Appl. Phys. Express 2014. V. 7. P. 023003-1-3.
  50. Kubota H., Yakushiji K., Fukushima A., Tamaru S. etc. Spin-torque oscillator based on magnetic tunnel junction with a perpendicularly magnetized free layer and in-plane magnetized polarizer // Appl. Phys. Express 2013. V. 6. P. 103003-1-4.
  51. Kudo K., Suto H., Nagasawa T., Mizushima K., Sato R. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator // J. Appl. Phys. 2014. V. 116. P. 163911-1-3.
  52. Iihama S., Xu Y., Deb M., Malinowski G., Hehn M., Gorchon J., Fullerton E.E., Mangin S. Single-shot multi-level all-optical magnetization switching mediated by spin-polarized hot electron transport // arXiv: 1805.02432.
  53. Bai X., Zhu J.G. Medium stack optimization for microwave assisted magnetic recording // IEEE Trans. Magn. 2017. V. 53. 200736-1-6.
  54. Bai X., Zhu J.G. Segmented media and medium damping in microwave assisted magnetic recording // AIP Adv.  2018. V. 8. P. 056508-1-5.
  55. Kase A., Akaqi F., Yoshoda K. Effects of head field and AC field on magnetization reversal for microwave assisted magnetic recording // AIP Adv. 2018. V. 8. P. 056505-1-5.
  56. Fontana R.E., Decad G.M. Moore’s law realities for recording systems and memory storage components: HDD, tape, NAND, and optical // AIP Adv.2018. V. 8. P.056506-1-5.
  57. Vogler C., Bruckner F., Fuger M., Bergmair B., Huber T., Fidler J., Suess D. Three-dimensional magneto-resistive random access memory devices based on resonant spin-polarized alternating currents // J. Appl. Phys. 2011. V. 109. P. 123901-1-5.
  58. Zhang S.L., Zhang J.Y., Baker A.A., Wang S.G., Yu G.H., Hesjedal T. Three dimensional magnetic abacus memory // Sci. Rep. 2014. V. 4. P. 6109-1-9.
  59. Hao C.I., Nie Z.Q., Ye H.P., Li H., Luo Y. etc. Three-dimensional supercritical resolved light-induced magnetic holography // Sci. Adv. 2017. V. 3. P. e1701398-1-9.
Date of receipt: 22 марта 2019 г.