350 rub
Journal Achievements of Modern Radioelectronics №2 for 2020 г.
Article in number:
Results of mathematical modeling of noise immunity of satellite radio navigation systems under the influence of intentional interference
Type of article: scientific article
DOI: 10.18127/j20700784-202002-05
UDC: 621.396
Authors:

D.G. Pantenkov – Ph.D. (Eng.), Head of the Department of Radiocommunication Systems, JSC «Kronstadt» (Moscow)

E-mail: Dmitrii.Pantenkov@kronshtadt.ru

Abstract:

The issues of radioelectronic influence on modern navigation equipment of consumers of satellite radio navigation systems are considered.

One of the main ways of such counteraction of SRNS focused on decrease in efficiency of its functioning is radio-electronic influence on navigation equipment of consumers (NEC). It should be borne in mind that modern SRNS such as «GPS»/»GALILEO»/«COMPASS» have a fundamental technical ability to resist interference due to: the use, along with open civil codes, also special high-precision codes; the use of adaptive antenna arrays forming «zeros» (dips) of the radiation pattern in the direction of the source of interference; the integration of «GPS» with inertial navigation system (ins); real-time ability to change the working constellation of spacecraft and their number; additions SRNS system of differential correction and monitoring. 

Taking into account the above, the purpose of this scientific and technical article is to consider the technical possibility of radioelectronic influence on the modern system. To achieve this goal, solved the following main tasks: the main characteristics of the navigation codes, developed a simplified block diagram of the receiver of the NEC, carried out mathematical modeling of the voltage in the absence and presence of interference in the MathCad package, we obtained quantitative estimates of coefficients of influence, leading to malfunction SRNS with probability at least 0,9. In conclusion, the results of analysis and research are presented, conclusions are drawn, relevant proposals and recommendations are formed.

The primary measure of noise immunity of navigation equipment of consumers of satellite navigation systems is the impact coefficient, which refers to the minimum required ratio of energy to interference energy of the useful signal at the input of the linear part of the receiver voltage at which equipment ceases to achieving the target with probability not less than 0,9, the level of exceeding the interference over the useful navigation signal. 

As a criterion for assessing the effectiveness of the impact on navigation systems, the probability of termination of the target task is used. If the probability of ending the target is greater than 0,9, then the impact is effective. If the probability of termination of the target is less than 0,9, the impact is ineffective.

Pages: 45-56
References
  1. Dmitriev D.D. Issledovanie pomekhoustoychivosti apparatury radionavigatsii. Sovremennye problemy razvitiya nauki, tekhniki i obrazovaniya: sb. nauch. tr.. Pod nauch. red. M.A. Barysheva, V.I. Kokorina. Krasnoyarsk: IPK SFU. 2009. S. 202–209. 
  2. Garin E.N., Dmitriev D.D. Kompleksirovanie sredstv sputnikovykh sistem radionavigatsii s avtonomnymi navigatsionnymi sistemami//Sovremennye problemy radioelektroniki: sb. nauch. st.. Pod red. A.I. Gromyko, A.V. Sarafanov; otv. za vyp. V.V. Sukhotin, S.I. Tregubov. Krasnoyarsk: IPK SFU. 2007. S. 166–169.
  3. Dyatlov A.P., Dyatlov P.A., Kul'bikayan B.Kh. Radioelektronnaya bor'ba so sputnikovymi radionavigatsionnymi sistemami. Monografiya. M.: Radio i svyaz'. 2004.
  4. Kharisov V.N., Efimenko V.S., Oganesyan A.A., Pastukhov A.V., Pavlov V.S., Golovin P.M., Medvedev P.V. Otsenka kharakteristik  podavleniya pomekh priemnikam GNSS s antennymi reshetkami v real'nykh usloviyakh. Radiotekhnika. 2013. №7.
  5. Iskusstvo navigatsionnoy voyny. Inostrannaya pechat'. Seriya «TSR sluzhb zarubezhnykh gosudarstv», VINITI, Inform. byull. 2001. № 12. S. 24–28.
  6. Global'naya sistema opredeleniya mestopolozheniya GPS i navigatsionnaya voyna. Inostrannaya pechat'. Ser. TSR sluzhb  zarubezhnykh gosudarstv. VINITI. Inform. byull. 1999. № 3. S. 20–26.
  7. Pantenkov D.G., Litvinenko V.P., Gusakov N.V. Matematicheskoe modelirovanie potentsial'noy skrytnosti kanala svyazi v mnogokanal'nykh radioliniyakh. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2013. T. 9. № 1. S. 47–49.
  8. Perov A.I. Sintez optimal'nogo algoritma obrabotki signalov v priemnikakh sputnikovoy navigatsii pri vozdeystvii garmonicheskoy pomekhi. M.: Radiotekhnika. Radiosistemy. 2005. № 7. S. 36–42.
  9. Perov A.I., Boldenkov E.N., Bakit'ko R.V. Analiz vliyaniya vnutrisistemnykh pomekh na apparaturu potrebiteley sputnikovykh radionavigatsionnykh sistem. Radiotekhnika. 2009. № 1. S. 20–28.
  10. Pantenkov D.G., Litvinenko V.P. Kriterii effektivnosti pomekhovogo vozdeystviya na ob"ekty aktivnogo radiomonitoringa. Vestnik  Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2011. T. 7. № 7. S. 18–22.
  11. Yudin V.N., Kamnev E.A. Rezul'taty model'nogo eksperimenta po radiopodavleniyu navigatsionnoy apparatury potrebiteley s chetyrekhelementnoy adaptivnoy antennoy reshetkoy. Vestnik RAEN. 2018. T. 18. № 3. S. 87–94.
  12. Veytsel' A.V., Veytsel' V.A., Tatarnikov D.V. Apparatura vysokotochnogo pozitsionirovaniya po signalam global'nykh navigatsionnykh sputnikovykh sistem: vysokotochnye antenny. Spetsial'nye metody povysheniya tochnosti pozitsionirovaniya. Pod red. M.I. Zhodzish-skogo. M.: MAI-PRINT. 2010.
  13. Monzingo R.A., Miller T.U. Adaptivnye antennye reshetki. Vvedenie v teoriyu. Per. s angl. pod red. V.A. Leksachenko. M.: Radio i svyaz'. 1986.
  14. Tyapkin V.N., Garin E.N. Metody opredeleniya navigatsionnykh parametrov podvizhnykh sredstv s ispol'zovaniem sputnikovoy  radionavigatsionnoy sistemy GLONASS: monografiya. Krasnoyarsk: Sib. feder. un-t. 2012.
  15. Pantenkov D.G. Rezul'taty otsenki pomekhoustoychivosti pervichnoy korrelyatsionnoy obrabotki signalov v navigatsionnoy apparature potrebiteley sputnikovykh radionavigatsionnykh sistem metodom matematicheskogo modelirovaniya. Aktual'nye voprosy proektirovaniya kosmicheskikh sistem i kompleksov. Sb. nauch. trudov aspirantov i soiskateley uchenykh stepeney. FGUP «NPO im. S.A. Lavochkina». Khimki. 2014. V. 15. S. 221–236.
  16. Pantenkov D.G. Rezul'taty otsenki pomekhoustoychivosti pervichnoy korrelyatsionnoy obrabotki signalov v navigatsionnoy apparature potrebiteley sputnikovykh radionavigatsionnykh sistem metodom eksperimental'noy otrabotki na maketakh otdel'nykh elementov stenda. Aktual'nye voprosy proektirovaniya kosmicheskikh sistem i kompleksov. Sbornik nauchnykh trudov aspirantov i soiskateley uchenykh stepeney. FGUP «NPO im. S.A. Lavochkina». Khimki. 2014. V. 15. S. 287–312.
  17. Shebshaevich V.S., Dmitriev P.P., Ivantsevich N.V. i dr. Setevye sputnikovye radionavigatsionnye sistemy. Pod red. V.S. Shebshaevicha. 2-e izd., pererab. i dop. M.: Radio i svyaz'. 1993.
  18. Mishchenko I.N., Volynkin A.I., Volosov P.S. i dr. Global'naya navigatsionnaya sistema NAVSTAR. Zarubezhnaya radioelektronika. 1980. № 8. S. 52–83.
  19. Kudryavtsev I.V., Mishchenko I.N., Volynkin A.I. i dr. Bortovye ustroystva sputnikovoy radionavigatsii. Pod red. V.S. Shebshaevicha. M.: Transport. 1988. [in Russian]
Date of receipt: 25 ноября 2019 г.