350 rub
Journal Achievements of Modern Radioelectronics №12 for 2020 г.
Article in number:
Simulation model of the process of detecting aerodynamic targets based on parametric transformations in a multi-position location system
Type of article: scientific article
DOI: 10.18127/j20700784-202012-03
UDC: 621.396.96
Authors:

Ivan S. Ashurkov1, Sergey A. Zhitkov2, Ivan N. Zaharov3, Nikolay A. Leshko4, Anatoly V. Moroz5,  Igor V. Sakhno61,2,3,4

 Yaroslavl Higher Military Institute of Air Defense (Yaroslavl, Russia),  5,6

 Military Space Academy named after A.F. Mozhaisky (St. Petersburg, Russia)

Abstract:

To confirm the performance of the algorithms for detecting aerodynamic targets based on parametric transformations of a sample of true and false marks, physical modeling and a full-scale experiment are required. Full-scale tests of radar systems are associated with significant time and material costs due to the high cost of creating experimental samples of the complex, control and measuring equipment and the involvement of a significant number of personnel in the experiment. In a number of cases, for example, when studying the issues of secondary and tertiary processing, it is less costly to conduct an experiment on complexes of semi-natural modeling of location systems.

The aim of the work is to develop a simulation model of the detection process based on parametric transformations, which allows one to evaluate the detection efficiency under conditions of low signal-to-noise ratios during inter-point processing of radar information. A simulation model of the detection process was developed on the basis of the location acoustic complex aerodynamic targets. The testing of the algorithm for detecting straight-line trajectories of targets based on the Hough parametric transformation using this model has been carried out.

Practical significance – the ability to detect targets in conditions of low values of the signal-to-noise ratio. The presented model can be used in the hardware and software of modern radar stations.

Pages: 32-44
For citation

Ashurkov I.S., Zhitkov S.A., Zaharov I.N., Leshko N.A., Moroz A.V., Sakhno I.V. Simulation model of the process of  detecting aerodynamic targets based on parametric transformations in a multi-position location system. Achievements of modern radioelectronics. 2020. V. 74. № 12. P. 32–44. DOI: 10.18127/j20700784-202012-03. [in Russian]

References
  1. Ashurkov I.S., Zaharov I.N., Leshko N.A., Zhitkov S.A., Cybul'nik A.N. Model' processa obnaruzhenija krivolinejnoj traektorii ajerodinamicheskoj celi v uslovijah nizkoj jenergeticheskoj dostupnosti radiolokacionnyh signalov kooperiruemogo istochnika podsveta  kosmicheskogo bazirovanija. Mater. IV Mezhdunar. voen.-nauch. konf. Pod obshh. red. A.A. Nerastenko. Tver': VA VKO. 2019. S. 12–23. [in Russian]
  2. Ashurkov I.S., Zaharov I.N., Leshko N.A., Zhitkov S.A., Moroz A.V., Sahno I.V. Rezul'taty jeksperimenta po obnaruzheniju krivolinejnoj traektorii ajerodinamicheskoj celi v mnogopozicionnoj lokacionnoj sisteme v uslovijah nizkih znachenij otnoshenija signal/shum. Uspehi sovremennoj radiojelektroniki. 2020. T. 74. № 4–5. S. 48–60. DOI: 10.18127/j20700784-202004-04. [in Russian]
  3. Zhitkov S.A., Ashurkov I.S., Leshko N.A., Zaharov I.N., Cybul'nik A.N. Metodika obnaruzhenija ajerodinamicheskoj celi, dvizhushhejsja po prjamolinejnoj traektorii v prostranstve. Tr. MAI. V. № 109. DOI: 10.34759/trd-2019-109-14. [in Russian]
  4. Moroz A.V., Sahno D.I., Sahno V.I. Polunaturnoe modelirovanie mnogopozicionnyh radiolokacionnyh stancij obzora zemnoj poverhnosti s ispol'zovaniem ul'trazvukovogo lokacionnogo stenda. Tr. HHIH Vseros. simp. «Radiolokacionnoe issledovanie prirodnyh sred». Pod obshh. red. M.M. Pen'kova; redkol.: I.V. Sahno, M.M. Pen'kov, Ju.V. Kuleshov i dr. VKA imeni A.F. Mozhajskogo. 2015. V. 11. T. 1. S. 207–217. [in Russian]
  5. Bakut P.A., Zhulina Ju.V., Ivanchuk N.A. Obnaruzhenie dvizhushhihsja ob#ektov. M.: Sov. radio. 1980. [in Russian]
  6. Skolnik M.I. Spravochnik po radiolokacii. Pod red. M.I. Skolnika; per. s angl. pod obshh. red. V.S. Verby. V 2 knigah. Kn. 2-h. M.: Tehnosfera. 2014. [in Russian]
  7. Aver'janov V.Ja. Raznesennye radiolokacionnye stancii i sistemy. Minsk: Nauka i tehnika. 1978. S. 27–35. [in Russian]
  8. Leshko N.A., Sahno I.V., Shaldaev S.E. Prostranstvenno-vremennaja obrabotka signalov v nazemno-kosmicheskoj mnogopozicionnoj radiolokacionnoj sisteme. Sb. nauch. tr. VNPK «Problemy sozdanija i primenenija malyh kosmicheskih apparatov i robototehnicheskih kompleksov v interesah vooruzhennyh sil Rossijskoj Federacii». T. 1. SPb: VKA im. A.F. Mozhajskogo. 2016. S. 144–157. [in Russian]
  9. Chernjak V.S. Mnogopozicionnaja radiolokacija. M.: Radio i svjaz'. 1993. [in Russian]
  10. Monakov A.A. Obnaruzhitel' dvizhushhejsja celi dlja radiolokacionnogo priemnika na osnove algoritma Hafa. Sb. dokl. Mezhdunar. nauch.-tehn. konf. «Radiolokacija, navigacija, svjaz'». 2014. S. 1584–1594. [in Russian]
  11. Boers Y., Ehlers F., Koch W., Luginbuhl T., Stone L.D., Streit R.L. Track before Detect Algorithms. Hindawi Publishing Corporation, EURASIP Journal on Advances in Signal Processing. V. 2008. Article ID 413932. DOI:10.1155/2008/413932. [in Russian]
  12. Semenov A.N. Obnaruzhenie radiolokacionnyh celej s pomoshh'ju preobrazovanija Hafa. Nauka i obrazovanie. Jelektron. zhurn. MGTU im. Baumana. 2014. № 12. S. 619–632. [in Russian]
  13. Konovalov A.A. Osnovy traektornoj obrabotki radiolokacionnoj informacii. SPb.: Izd-vo SPbGJeTU «LJeTI». 2013. S. 52–60. [in Russian]
  14. Bochkarev A.M., Jur'ev A.N., Dolgov M.N., Shherbinin A.V. Cifrovaja obrabotka radiolokacionnoj informacii pri soprovozhdenii celej. Zarubezhnaja radiojelektronika. 1991. № 3. S. 3–22. [in Russian]
  15. Kuz'min S.Z. Cifrovaja radiolokacija. Vvedenie v teoriju. Kiev KVIC. 2000. [in Russian]
  16. Zashhita radiolokacionnyh sistem ot pomeh. Sostojanie i tendencii razvitija. Pod. red. A.I. Kanashhenkova i V.I. Merkulova. M.: Radiotehnika. 2003. [in Russian]
Date of receipt: 20.11.2020 г.