350 rub
Journal Achievements of Modern Radioelectronics №11 for 2020 г.
Article in number:
Principles of construction and prospects for implementation of aviation virtual electronic polygons
Type of article: scientific article
DOI: 10.18127/j20700784-202011-06
UDC: 351.814; 621.38
Authors:

Alexander D. Filin, Alexander R. Bestugin, Irina A. Kirshina

 Saint Petersburg State University of Aerospace Instrumentation (SUAI) (St. Petersburg, Russia)

 fadadf@rambler.ru,  fresguap@mail.ru,  zlata@aanet.ru

Abstract:

The trend of increasing the role and importance of the Russian Air force (VVS) in ensuring the national security of the country has become irreversible. At the same time, a special type of training in aviation is tactical flight training (LTP), aimed at training in conducting combat operations (performing combat tasks) singly, as part of an aviation unit and unit in a given region. At the same time, achieving high-quality training of flight personnel and specialists in combat control of air force units is possible only when working out tasks in conditions close to modern real combat operations. This state of Affairs has predetermined the conduct of promising scientific research that would make it possible to prepare for the upcoming operations at landfills in conditions close to potentially real ones based on the introduction of cognitive technologies using the achievements of information technology. In this paper, based on the results of research on improving tactical flight training of the air force, the concept and structure of a promising automated LTP complex - an aviation virtual electronic polygon (AVEP), which allows you to organize simulation of a given air tactical situation in the required geographical area with modeling of all types of counteraction of a potential enemy during real flights. As a result of expert research, the advantages of implementing AVEP and the effectiveness of implementing IT in the air force polygon system are shown.

Pages: 30-38
For citation

Filin A.D., Bestugin A.R., Kirshina I.A. Principles of construction and prospects for implementation of aviation virtual electronic polygons. Achievements of modern radioelectronics. 2020. V. 74. № 11. P. 30–38. DOI: 10.18127/ j20700784-202011-06. [in Russian]

References
  1. Rachkov V.P. Obshhij podhod k avtomatizirovannoj ocenke istrebitel'noj aviacii na aviacionnom «jelektronnom poligone». Voennaja mysl'. 2019. № 5. S. 120–130.
  2. Prikaz MO RF № 431 ot 25.10.2001 «Ob utverzhdenii Federal'nyh aviacionnyh pravil po organizacii poligonnoj sluzhby v gosudarstvennoj aviacii». M.: MO RF. 2002.
  3. Bestugin A.R., Eshenko A.A., Filin A.D. Fir Traffic Control Futomated Systems Springer. 2020.
  4. Bestugin A.R., Shatrakov Y.G, Filin A.D., Volodyagin A.V. The complex automated system of flight and tactical preparation and its estimates. Proceedings of the 2nd international conference on Eurasian scientific development. East West Association for Advanced Studies and Higher Education GmbH. Vienna. 2014. P. 112–117.
  5. IKAO Doc. 9868. Pravila ajeronavigacionnogo obsluzhivanija. Ch. IV: Podgotovka i ocenka personala po organizacii vozdushnogo dvizhenija (OrVD). Izd. 2-e. IKAO. 2016. S. IV-1-1–IV-3-1.
  6. Piunov O., Pelin L. Operativnaja i boevaja podgotovka VVS SShA v svete novyh ugroz. Zarubezhnoe voennoe obozrenie. 2012. № 5. S. 52–58.
  7. Uchenija po programme «Red fljeg» VVS SShA. Zarubezhnoe voennoe obozrenie. Dekabr' 2015. 
  8. Scholz D., Thorbeck J. Computer Based Training in Aircraft Design Education. ICAS 2000 Congress. R. 173.1–173.12.
  9. Linnik S. Poligony Nevady (chast' 2). Voennoe obozrenie. Janvar' 2017. URL: www.topwar.ru.
  10. Abdelhamid Chriette, Franck Plestan, Herman Castañeda, Madhumita Pal, Mario Guillo, Marcin Odelga, Sujit Rajappa, Rohit Chandra Adaptive robust attitude control for UAVs – Design and experimental validation. International Journal of Adaptive Control and Signal Processing. 2016. V. 30. P. 1478–1493.
Date of receipt: 10.11.2020 г.