350 rub
Journal Achievements of Modern Radioelectronics №10 for 2020 г.
Article in number:
Construction principles of a multichannel multifrequency radiothermograph based on monolithic integrated circuits
Type of article: overview article
DOI: 10.18127/j20700784-202010-02
UDC: 615.471
Authors:

A.G. Gudkov – Dr.Sc. (Eng.), Professor; General Director,

Research Institute RL Bauman Moscow State Technical University; LLC NPI «HYPERION» (Moscow, Russia) E-mail: ooo.giperion@gmail.com

S.G. Vesnin  – Ph.D. (Eng.), Senior Research Scientist; Chief Designer,

Research Institute RL Bauman Moscow State Technical University; LLC «RTM Diagnostics» (Moscow, Russia) E-mail: vesnin47@gmail.com

V.Yu. Leushin – Ph.D. (Eng.), Senior Research Scientist; Deputy General Director,

Research Institute RL Bauman Moscow State Technical University; LLC NPI «HYPERION» (Moscow, Russia) E-mail: ra3bu@yandex.ru

S.V. Agasieva – Ph.D. (Eng.), Associate Professor; Senior Research Scientist,

RUDN University; Research Institute RL Bauman Moscow State Technical University (Moscow, Russia)

S.V. Chizhikov – Post-graduate Student; Junior Research Scientist; Technician,

Bauman Moscow State Technical University; Research Institute RL Bauman Moscow State Technical University;  YICC «Cube» (Moscow, Russia)

E-mail: tehnoinnov@mail.ru

V.N. Vyuginov – Ph.D. (Phys.-Math.), Associate Professor,

St. Petersburg State Electrotechnical University «LETI» (St. Petersburg, Russia) E-mail: vvyuginov@yandex.ru

M.K. Sedankin – Ph.D. (Eng.), Associate Professor; Senior Research Scientist,

National Research University «Moscow Power Engineering Institute»; Burnasyan Federal Medical Biophysical Center  of Federal Medical Biological Agency (Moscow, Russia)

E-mail: msedankin@yandex.ru

E.A. Gudkov – Junior Research Scientist,

Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (Moscow, Russia) E-mail: eh1770802@gmail.com

Abstract:

Currently available diagnostic devices using the microwave radiometry method are single-channel and single-frequency devices. However, to improve the efficiency of diagnostics, it is necessary to have information about the internal temperatures and their dynamics at several points of the body simultaneously and at different depths. Combining the multichannel and multifrequency principles in one device will require fundamentally new technical solutions, as well as a significant reduction in the size of the radiometer, which  implies the use of technologies of monolithic integrated circuits. The objective of the work was to analyze domestic and foreign scientific and technical literature, to analyze modern circuitry and technological solutions of medical radiothermographs, broadband applicator antennas, and, on the basis of the information received, to determine the principle of constructing a multichannel multifrequency radiothermograph, as well as the possibility of its implementation using the technology of monolithic integrated schemes.  Today, microwave radiometry presents various options for constructing microwave medical radiothermographs. There are both multichannel and multifrequency radiothermographs, in which one or multiple antennas and microwave receivers can be used, respectively for each measurement channel. As an optimal design of a microwave miniature multifrequency multichannel radiothermograph, it is proposed to use an M-frequency microwave receiver with a microwave switch for N-channels, respectively for N ultra-wideband antennas. The proposed version of the scheme for constructing a multichannel multifrequency radiothermograph can be used in research related to the creation of a prototype of a medical device.

Pages: 30-49
For citation

Gudkov A.G., Vesnin S.G., Leushin V.Yu., Agasieva S.V., Chizhikov S.V., Vyuginov V.N., Sedankin M.K., Gudkov E.A. Construction principles of a multichannel multifrequency radiothermograph based on monolithic integrated circuits.

Achievements of modern radioelectronics. 2020. V. 74. № 10. P. 30–49. DOI: 10.18127/j20700784-202010-02.  [in Russian]

References
  1. URL: http://www.radiometry.ru/rtm-01-res/description. [in Russian]
  2. Spiliopoulos S. et al. Multi-center feasibility study of microwave radiometry thermometry for non-invasive differential diagnosis of arterial disease in diabetic patients with suspected critical limb ischemia. Journal of Diabetes and its Complications. 2017. Т. 31. №. 7. P. 1109–1114.
  3. Gudkov A.G., Leushin V.Yu., Meshkov S.A., Popov V.V. Application of complex technological optimization for monolithic microwave circuits designing. CriMiCo – 18th International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings. 2008. Т. 2. P. 535–536.
  4. Tikhomirov V.G., Gudkov A.G., Agasieva S.V., Gorlacheva E.N., Shashurin V.D., Zybin A.A., Evseenkov A.S., Parnes Y.M. The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method. Journal of Physics: Conference Series. 2017. 917 (4). № 042016.
  5. Parnes Y.M., Tikhomirov V.G., Petrov V.A., Gudkov A.G., Marzhanovskiy I.N., Kukhareva E.S., Vyuginov V.N., Volkov V.V., Zybin A.A. Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling Saint Petersburg OPEN 2016. Journal of Physics: Conference Series 741 (2016). 012024.
  6. Aleksandr G., Shashurin V., Vyuginov V., Tikhomirov V., Vidyakin S., Agasieva S., Chizhikov S. Dependence analysis of the GaN HEMT parameters for space application on the thickness AlGaN barrier layer by numerical simulation. 2017 – 2nd International Conference on Opto-Electronic Information Processing (ICOIP 2017) . July 7-9, 2017 Singapore. IEEE Catalog Number: CFP17F81-PRT (P. 79–82).
  7. Tikhomirov V.G., Gudkov A., Petrov V., Agasieva S., Zybin A., Yankevich V., Evseenkov A. Simulation of electric field distribution in GaN HEMTs for the onset of structure degradation. In 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo) (P. 115–118).
  8. Klemetsen Ø. Design and evaluation of a medical microwave radiometer for observing temperature gradients subcutaneously in the human body: PhD thesis. University of Tromso, faculty of science department of physics and technology. Tromso, 2011.
  9. Park W., Jeong J. Total Power Radiometer for Medical Sensor Applications Using Matched and Mismatched Noise Sources. Sensors. 2017. Т. 17. № 9. С. 2105.
  10. Vaysblat A.V. Meditsinskiy radiotermometr RTM-01-RES. Biomeditsinskie tekhnologii i radioelektronika. 2001. № 8. P. 11–23. [in Russian]
  11. Dicke R.H. The measurement of thermal radiation at microwave frequencies. Review Science Instruments. 1946. V. 17. № 7. Р. 268–275.
  12. Barrett A.H., Myers P.C. Subcutaneous temperature: a method of noninvasive sensing. Science. 1975. V. 90. P. 669–671.
  13. Barrett A.H., Myers Ph. C., Sadovsky N.L. Microwave thermography in the detection of breast cancer. AJR. 1980. № 134. Р. 365–368.
  14. Iudicello S. Microwave radiometry for breast cancer detection. PhD thesis. Universita’ degli studi tor vergata Roma, dipartimento di informatica, sistemi e produzione geoinformation research doctorate. Rome. 2009. P.111.
  15. Dubois L. et al. Contact-less sensors for temperature measurement by microwave radiometry in medical or industrial applications. Proceedings of ISAP. Niigata. Japan. 2007. P. 1262–1265.
  16. Clarisse Beaucamp-Ricard et al. Temperature measurement by microwave radiometry. IEEE transactions on instrumentation and measurement. 2009. V. 58. № 5. P. 1712–1719.
  17. Stauffer P.R. et al. Stable microwave radiometry system for long term monitoring of deep tissue temperature. Energy-based Treatment of Tissue and Assessment VII. International Society for Optics and Photonics. 2013. Т. 8584. С. 85840R.
  18. Rodrigues D.B. et al. Microwave radiometry for noninvasive monitoring of brain temperature. In Emerging Electromagnetic Technolo-gies for         Brain      Diseases Diagnostics,         Monitoring           and        Therapy (2018.    P.          87–127). Springer, Cham.    URL: https://link.springer.com/chapter/10.1007/978-3-319-75007-1_5.
  19. Vesnin S. et al. Research of a microwave radiometer for monitoring of internal temperature of biological tissue. Eastern-European Journal of Enterprise Technologies. 2019. V. 4. P. 6–15.
  20. Patent na izobretenie № RU2460081 RF. «Mnogokanal'nyy nulevoy» radiometr. Filatov A.V., Ubaychin A.V., Rozina E.I. FGBOU VPO «Tomskiĭ gosudarstvennyĭ universitet sistem upravleniya i radioelektroniki» (TUSUR). № 2010147776/28, 23.11.2010, 27.08.2012. [in Russian]
  21. Patent na izobretenie № RU2718292 RF. Pribor dlya diagnostiki funktsional'nogo sostoyaniya golovnogo mozga. Leushin V.Yu., Gudkov A.G., Chizhikov S.V. OOO «Nauchno-proizvodstvennoe predpriyatie «Tekhnologicheskie innovatsii», 24.07.2019, 24.07.2019. [in Russian]
  22. Patent na izobretenie № RU2541426 RF. Mnogopriemnikovyy nulevoy radiometr. Filatov A.V., Ubaychin A.V. FGBOU VPO «Tomskiy gosudarstvennyy universitet sistem upravleniya i radioelektroniki», 23.09.2013,23.09.2013. [in Russian]
  23. Patent na izobretenie № 2328751 RF. Mnogochastotnyy radiotermograf. Biryukov E.D., Verba V.S., Gudkov A.G., Leushin V.Yu., Plyushchev V.A., Sidorov I.A. Otkrytoe aktsionernoe obshchestvo «Kontsern radiostroeniya «Vega», 14.08.2006, 14.08.2006. [in Russian]
  24. Hand et al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling. Physics in Medicine & Biology. 2001. V. 46. №. 7. P. 1885–1903.
  25. Sedankin M.K. et al. Development of a miniature microwave radiothermograph for monitoring the internal brain temperature. EasternEuropean Journal of Enterprise Technologies. 2018. V. 3. № 5. P. 26–36.
  26. Popovic Z., Momenroodaki P., Scheeler R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine. 2014. V. 52. №. 10. P. 118–125.
  27. Momenroodaki P., Popovic Z., Scheeler R. A 1.4-GHz radiometer for internal body temperature measurements. 2015 European Microwave Conference (EuMC). IEEE. 2015. P. 694–697.
  28. Мomenroodaki P. et al. Noninvasive Internal Body Temperature Tracking With Near-Field Microwave Radiometry. IEEE Transactions on Microwave Theory and Techniques. 2017. № 5. P. 2535–2545.
  29. Ravi V.M., Arunachalam K. A low noise stable radiometer front-end for passive microwave tissue thermometry. Journal of Electromagnetic Waves and Applications. 2019. Т. 33. № 6. P. 743–758.
  30. Gudkov A.G. et al. Studies of a microwave radiometer based on integrated circuits. Biomedical Engineering. 2020. V. 53(6).  P. 413–416. URL: https://link.springer.com/article/10.1007%2Fs10527-020-09954-w
  31. Sedankin M.K. Sedankin M.K., Nelin I.V., Leushin V.Yu., Skuratov V.A., Mershin L.Y., Vesnin S.G. System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer. 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE. 2020. P. 154–159. URL: http://apede.sstu.ru/prog.html
  32. Stec B., Dobrowolski A., Susek W. Estimation of deep-seated profile of temperature distribution inside biological tissues by means of multifrequency microwave thermograph. IEEE. 2002.
  33. Stec B., Dobrowolski A. Estimation of internal distribution of temperature inside biological tissues by means of multifrequency microwave thermograph. Journal of telecommunications and information technology. 2002.
  34. Svein Jacobsen, Paul R. Stauffer Multifrequency Radiometric Determination of Temperature Profiles in a Lossy Homogeneous Phantom  Using a Dual-Mode Antenna With Integral Water Bolus. IEEE transactions on microwave theory and techniques. 2002.
  35. Sugiura T. et al. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval. Radio Science. Oct. 2011. V. 46. № 5. P. 1–7.
  36. Sugiura T. et al. Five-band microwave radiometer system for noninvasive measurement of brain temperature in new-born infants: system calibration and its feasibility. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1-5 Sept. 2004, San Francisco, CA, USA. V. 1. P. 2292–2295.
  37. Bardati F., Marrocco G., Tognolatti P. New-born-infant brain temperature measurement by microwave radiometry. IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313). 16-21 June 2002 San Antonio, TX, USA. V. 1. P. 811–814.
  38. Gudkov A.G. et al. Use of multichannel microwave radiometry for functional diagnostics of the brain. Biomedical Engineering. Jul. 2019. V. 53, № 2. P. 108–111.
  39. Kublanov V.S. Radiophysical system for examining functional state of a patient’s brain. Biomedical Engineering. Aug. 2000. V. 43. № 3. P. 114–119.
  40. Patent № KR20150066089A. Multichannel diagnostic device using radiometer for diagnosing breast disease early. 2013.
  41. Stec B., Dobrowolski A., Susek W. Multifrequency microwave thermograph for biomedical applications. IEEE transactions on biomedical engineering. 2004. V. 51. № 3. P. 548–550.
  42. Gudkov A.G., Leushin V.Yu., Sidorov I.A. i dr. Elektronnyy modul' mnogokanal'nogo SVCh trakta dlya sistem radiotermokarti-rovaniya. Elektromagnitnye volny i elektronnye sistemy. 2014. № 1. S. 27–34. [in Russian]
  43. Jacobsen S., Stauffer P. Multi-frequency radiometric determination of temperature profiles in a lossy homogenous phantom using a dual-mode antenna with integral water bolus. IEEE Transactions on Microwave Theory and Techniques. 2002. № 50. P. 1737–1746.
  44. Gudkov A.G. i dr. Informatsionno-izmeritel'nye i upravlyayushchie radioelektronnye sistemy i kompleksy. Monografiya. Pod. red. V.S. Verby. M.: Radiotekhnika. 2020. [in Russian]
  45. Livanos N.A. et al. Design and interdisciplinary simulations of a hand-held device for internal-body temperature sensing using microwave radiometry. IEEE Sensors Journal. 2018. V. 18. № 6. P. 2421–2433.
  46. Rodrigues D.B. et al. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Transactions on Biom. Eng. Jul. 2014. V. 61. № 7. P. 2154–2160.
  47. León G. et al. Wideband epidermal antenna for medical radiometry Sensors. 2020. Т. 20. № 7. С. 1987.
  48. Vesnin S.G., Sedankin M.K., Gudkov A.G., Leushin V.Yu., Sidorov I.A., Porokhov I.O., Agasieva S.V., Vidyakin S.I. Pechatnaya antenna so vstroennym infrakrasnym datchikom temperatury dlya meditsinskogo mnogokanal'nogo mikrovolnovogo radiotermo-grafa. Meditsinskaya tekhnika. 2020. № 4. S. 4–7. [in Russian]
  49. Ullah H. et al. A Wearable Radiometric Antenna for Non-Invasive Brain Temperature Monitoring. 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). IEEE. 2018. P. 1–2.
  50. Sedankin M.K. i dr. Diagnosticheskaya konformnaya sistema dlya neyrovizualizatsii golovnogo mozga s ispol'zovaniem mnogokanal'nogo radiotermometra na osnove monolitnykh integral'nykh skhem. Nanotekhnologii: razrabotka, primenenie - XXI vek. 2020. T. 12. № 1. S. 5–12. [in Russian]
  51. Sedankin M.K., Chupina D.N., Nelin I.V., Skuratov V.A. Development of patch textile antenna for medical robots. 2018 Int. Conf. Actual Problems of Electron Devices Engineering (APEDE). IEEE. 2018. P. 413–420.
  52. Vesnin S., Turnbull A.K., Dixon J.M., Goryanin I. Modern microwave thermometry for breast cancer. Journal of Molecular Imaging & Dynamics [Online]. Oct. 2017. V. 7. № 136. P. 10–1109. URL: https://www.longdom.org/open-access/modern-microwavethermometry-for-breast-cancer-2155-9937-1000136.pdf
  53. Sedankin M.K., Leushin V.Yu., Gudkov A.G., Vesnin S.G., Sidorov I.A., Agasieva S.V., Markin A.V. Mathematical simulation of heat transfer processes in a breast with a malignant tumor. Biomed. Eng. 2018. V. 52. № 3. P. 190–194.
  54. Cheboksarov D.V., Butrov A.V., Shevelev O.A., Amcheslavsky V.G., Pulina N.N., Buntina M.A., Sokolov I.M. Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziol. Animatol. 2015. V. 60. № 1. P. 66–69.
Date of receipt: 10.09.2020