350 rub
Journal Achievements of Modern Radioelectronics №1 for 2020 г.
Article in number:
Information-simulation modeling of the heart bioelectric excitation
Type of article: scientific article
DOI: 10.18127/j20700997-202001-04
UDC: 612.173:[536.758:519.85:004.925.83:004.942]
Authors:

N.E. Kosykh – 

Dr.Sc. (Med.), Professor, Department of Hospital Surgery with Course of Oncology,

Far East State Medical University (Khabarovsk)

E-mail: kosykh.n@bk.ru A.Ya. Chizhov – 

Dr.Sc. (Med.), Professor, Honored Scientist of the Russian Federation, Academician of the Russian Ecological

Academy, Department Forensic Ecology, Faculty of Ecology, Peoples’ Friendship University of Russia (Moscow) E-mail: ma21@mail.ru

S.Z. Savin – 

Ph.D. (Eng.), Leading Research Scientist, Medical Informatics Department, 

Khabarovsk Center for New Information Technologies of the Pacific State University (Khabarovsk) E-mail: savin.sergei@mail.ru

S.K. Pinaev – 

Ph.D. (Med.), Associate Professor, Department of General and Clinical Surgery, 

Far Eastern State Medical University (Khabarovsk) E-mail: pinaev@mail.ru

Abstract:

The concept of virtual information and simulation modeling of complex biological objects is presented on the example of cardiac conduction system. The method of research is based on the original multidimensional numerical model of the organism and is a grouping of information points in a closed space of the object under study. Each of these points carries a set of logical and numerical information characterizing a specific anatomical area. There are mutual relationships between points that affect their properties. Research materials. The basis for the creation of the model are two-dimensional layered electronic images of the object in the form of point drawings. These images are translated into a spreadsheet, which becomes a model – the basis of an electronic database, which is accessed by computer programs solving problems of modeling the structure and simulation in the computer version of the functions of the body or its individual parts. The result of modeling according to the above principles is a point multidimensional information-simulation model. The study presents the principles of creation of electrodynamic virtual information-simulation modeling of the heart, reflecting the spread of bioelectric excitation in this body. It is shown that the concept of virtual information-simulation modeling, successfully used in the creation of computer training simulators of the heart can be used, for example, in clinical arhythmology. Fractal principle of multi-dimensional numerical model of the body allows you to make any point with additional information reflecting those or other pathological changes. discussed above peculiarities of the multidimensional point of information and simulation models in General make them quite promising for use in the training task in clinical cardiology. The possibilities of modeling a diverse spectrum of pathological States of the cardiac conduction system are discussed. Virtual information-simulation modeling is a new approach to modeling of bioelectric excitation of the heart. This method of design becomes an independent sphere of activity, because it is responsible for a significant semiotic and intellectual part of all the work on the modeling of an arbitrary medical and biological object. The method of point multidimensional information-simulation model can be used as a basis for the creation of computer simulators of the heart for the tasks of medical and biological education and research of complex living systems.

Pages: 34-43
References
  1. Amosov N.M. Modelirovanie slozhnyh sistem. Kiev: Naukova dumka. 1968. 88 s.
  2. Buslenko N.P. Avtomatizaciya imitacionnogo modelirovaniya slozhnyh sistem. M.: Nauka. 1977. 240 s.
  3. Lasted L.B. Vvedenie v problemu prinyatiya reshenij v medicine. M.: Mir. 1971. 282 s. 
  4. Kel'ton V., Lou A. Imitacionnoe modelirovanie. Klassika CS. Izd. 3-e. SPb.: Piter; Kiev: Izdatel'skaya gruppa BHV-Piter. 2004. 887 s.
  5. Mel'nikov V.G. Informacionnoe modelirovanie v klinicheskoj medicine. Kiev: Naukova dumka. 1979. 140 s.
  6. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. V. 117. P. 500–544.
  7. Ross S.A. Course of simulation. Prentice Hall College Div. 1990. 250 p.
  8. Taha A. Simulation Modeling and SIMNET. Prentice Hall. 1988. 397 p.
  9. Wiener N., Rosenblueth A. The Mathematical Formulation of the Problem of Conduction of Impulses in a Network of Connected Excitable Elements, Specifically in Cardiac Muscle // Arch. Inst. Cardiologia de Mexico. 1946. V. 16. № 3–4. P. 205–65.
  10. Baum O.V. Modelirovanie elektricheskoj aktivnosti serdca // Biofizika slozhnyh sistem i radiacionnyh narushenij / Pod red. G.M. Franka. M.: Nauka. 1977. S. 119–129.
  11. Vorob'ev E.I., Kitov A.N. Vvedenie v medicinskuyu kibernetiku. M.: Medicina. 1977. 287 s.
  12. Petrov V.S., Vil'demanov A.V., Grigor'eva S.A., Kozinov E.A., Komar M.A., Kostin V.A., Kryukov A.K., Levanova T.A., Meerov I.B., Osipov G.V. Programmnyj kompleks «Virtual'noe serdce» // Informacionnye tekhnologii. Vestnik Nizhegorodskogo un-ta im. N.I. Lobachevskogo. 2012.  № 5 (2). S. 438–447.
  13. P'yanyh O.S. Vvedenie v predstavlenie i obrabotku medicinskoj informacii v Internete // Medicinskaya vizualizaciya. 2002. № 3. S. 130–137. 
  14. Titomir L.I., Kneppo P. Matematicheskoe modelirovanie bioelektricheskogo generatora serdca. M.: Nauka. 1999. 448 s.
  15. Aliev R.R., Panfilov A.V. A simple two-variable model of cardiac excitation // Chaos, Solitons and Fractals. 1996. V. 7. № 3. P. 293–301.
  16. Beeler G.W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres // J. Physiol. 1977. V. 268. P. 177–210.
  17. Fitz H.R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical J. 1961. V. 1. P. 445–466.
  18. Grandi E., Morotti S., Pueyo E., Rodriguez B. Getting to the heart of safety // Pharmacology Front Physiol. 2018. V. 1. P. 678–679.
  19. Maltsev V.A., Lakatta E.G. The funny current in the context of the coupled-clock pacemaker cell system // Heart Rhythm. 2012. V. 9. P. 302–307. DOI:10.1016/j.hrthm.2011.09.022.
  20. Maltsev V.A., Lakatta, E.G. Numerical models based on a minimal set of sarcolemmal electrogenic proteins and an intracellular Ca(2+) clock generate robust, flexible, and energy-efficient cardiac pacemaking // J. Mol. Cell. Cardiol. 2013. V. 59. P. 181–195. DOI: 10.1016/j.yjmcc.2013.03.004. 
  21. Kosyh N.E., Savin S.Z., Lindenbraten V.D. Metod virtual'nogo informacionnogo modelirovaniya v radiologii // Radiologiya – praktika. 2004. № 2. S. 32–35. 
  22. Kosyh N.E., Savin S.Z., Smagin S.I. Virtual'nye informacionnye modeli opuholevogo rosta // Informacionnye tekhnologii i vychislitel'nye sistemy. 2005. № 1. S. 117–129.
  23. Wilders R. Computer modeling of the sinoatrial node // Med. Biol. Eng. Comput. 2007. № 45. P. 189–207.
  24. Strutynskij A.V. Tahiaritmii i bradiaritmii. Diagnostika i lechenie. Izd. 4-e. M.: MEDpress-inform. 2016. 287 s.
  25. Bala R., Garcia F.C., Hutchinson M.D., Gerstenfeld E.P., Dhruvakumar S., Dixit S. et al. Electrocardiographic and electrophysiologic features of ventricular arrhythmias originating from the right/left coronary cusp commissure // Heart Rhythm. 2010. V. 7. P. 312–322.
Date of receipt: 11 ноября 2019 г.