350 rub
Journal Achievements of Modern Radioelectronics №7 for 2019 г.
Article in number:
System functions of detectors fields
Type of article: scientific article
DOI: 10.18127/j20700784-201907-02
UDC: 004.932.72'1
Authors:

А.V. Bogoslovsky – Dr.Sc. (Eng.), Professor, Honored Scientist of RF, 

Department «Mathematics», MTSC Air Forces «MAA named professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh) E-mail: abvngb@yandex.ru

I.V. Zhigulina – Ph.D. (Eng.), Associate Professor, Professor, 

Department «Mathematics», MTSC Air Forces «MAA named professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh) E-mail: ira_zhigulina@mail.ru

А.V. Ponomarev – Ph.D. (Eng.), Associate Professor,

MTSC Air Forces «MAA named professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh) E-mail: cycloida@mail.ru

Abstract:

In this work, the system functions of the detectors fields, special computational-forming media intended for image processing, are  investigated. One of the main advantages of such fields is the ability to form a contour image of a reduced dimension in comparison with the dimension of the original image.

The impulse responses and transmission coefficients of a two-dimensional and one-dimensional detectors fields are found. Analytical expressions are obtained for finding samples of the output signal of the detectors field when it drifts. It is established that the impulse response of the detectors field in the process of drift coincides with the impulse response of one detector.

Graphics of one-dimensional and two-dimensional transfer coefficients of the detectors fields with different linear dimensions of the central region of the detectors were obtained. It is shown that all detectors fields are suppressing in the region of lower spatial  frequencies. A similar consideration of the system functions of the detector fields allows their use in well-developed methods for analyzing and synthesizing linear systems that are invariant to shear.

A mechanism for the drift of the detectors field is proposed and described, its use makes it possible to avoid loosing contours and to reduce computational costs by several orders of magnitude.

Pages: 14-18
References
  1. Ponomarev A.V., Bogoslovskiy A.V., Zhigulina I.V. Detektornye polya. Radiotekhnika. 2018. № 7. S. 129−136. [in Russian]
  2. Ponomarev A.V., Bogoslovskiy A.V., Zhigulina I.V. Model' dreyfa detektornogo polya. Radiotekhnika. 2018. № 11. S. 16−20. [in Russian]
  3. Bogoslovskiy A.V., Ponomarev A.V., Zhigulina I.V. Identifikatsiya granits ob"ektov na osnove modeli dreyfa detektornogo polya. Radiotekhnika. 2018. № 11. S. 21–25. [in Russian]
  4. Ponomarev A.V., Bogoslovskiy A.V., Zhigulina I.V. Dvumernaya diskretnaya fil'tratsiya vykhodnykh signalov detektornykh poley. Radiotekhnika. 2018. № 7. S. 137–145. [in Russian]
  5. Ponomarev A.V., Bogoslovskiy A.V., Zhigulina I.V. Obrabotka detektornym polem izobrazheniy, iskazhennykh smazom. Radiotekhnika. 2019. V pechati. [in Russian]
  6. Sibert U.M. Tsepi, signaly, sistemy. V 2-kh chastyah. Ch. I. M.: Mir. 1988. [in Russian]
Date of receipt: 15 мая 2019 г.