350 rub
Journal Achievements of Modern Radioelectronics №3 for 2019 г.
Article in number:
Software complex for calculating the initial section of the current-voltage characteristics of a resonant-tunneling diode with the possibility of computer statistical experiment
Type of article: scientific article
DOI: 10.18127/j20700784-201903-03
UDC: 621.382.2
Authors:

К.V. Cherkasov – Post-graduate Student, Bauman Moscow State Technical University E-mail: kvche@mail.ru

S.А. Meshkov – Ph.D. (Eng.), Associate Professor, Bauman Moscow State Technical University E-mail: sb67241@mail.ru

Yu.А. Ivanov – Dr.Sc. (Phys.-Math.), Professor, Bauman Moscow State Technical University

E-mail: y-a-ivanov@mail.ru

М.О. Makeev – Ph.D. (Eng.), Engineer 1 cat., Bauman Moscow State Technical University E-mail: mc.stiv@gmail.com

Abstract:

Resonant-tunneling diode (RTD) based on GaAs/AlGaAs multilayer heterostructures is a prospective element of SHF and EHF electronics. Using it as radio signal converters nonlinear element would allow improving their performance indices. According to preliminary research, RTDs made by standard technology is comparable to the best samples of semiconductor heterostructural element base in reliability.

Today’s microwave electronic products (including the solid-state electronics) markets growth speed has caused the microwave electronics production volumes to move to the large-scale (and in some segments – the mass) area. This trend is observed for Russian and abroad markets alike. This requires an estimation of semiconductor elements performance indices technological dispersion estimation, in other words, their reproducibility under existing production technology conditions.

The purpose of this paper is to develop a software tool for RTD current-voltage (I-V) characteristics parameters probabilistic analysis. Existing RTD I-V characteristics modeling tools have a closed source code, making any functional additions required for computer statistical experiment impossible, or insufficient speed for carrying out a computer statistical experiment. Therefore, an original software package was developed. The package developed allows simulating RTD I-V characteristics basing on diodes heterostructure parameters and to determine I-V characteristics statistical parameters from given RTD design parameters technological errors. RTD I-V characteristics simulation algorithm used in developed package has enough speed to implement computer statistical experiment on its basis. The Tsu-Esaki formula is used as RTD I-V characteristic calculation mathematical model. Diodes resonant-tunneling structures (RTS) tunneling transparency is calculated by transfer matrix method.

To estimate the simulation accuracy, a comparison between the results of calculating the I-V characteristic of the RTD and the ,experimental data obtained by measuring a batch of 27 diodes was carried out. The maximum current difference between the calculated and experimental I-V characteristic in the 0...0,4 V range is 3,49%.

A module of computer statistical experiment was developed on the RTD I-V characteristic calculation modules basis.

The main RTD technological errors influence on RTD I-V characteristic was studied by using the software package developed. The ,errors studied are: diodes RTS technological errors, ohmic contacts resistance errors, and mesa dimensions errors. The study carried out revealed that maximal contribution to the I-V characteristics variance is made by the diodes RTS technological errors. 

Statistical modeling results adequacy evaluation was carried out by comparing simulated current distribution at the RTDs operating point with the one obtained by statistical processing of 30 diodes batch measurement results. Comparison between experimental and simulated current distributions statistical parameters revealed that simulated data is adequate to experiment results.

Pages: 28-36
References
  1. Ivanov Yu.A., Meshkov S.A., Shashurin V.D., Fedorkova N.V., Fedorenko I.A. Subgarmonicheskiyj smesitelj s uluchshennihmi intermodulyacionnihmi kharakteristikami na baze rezonansno-tunneljnogo dioda // Radiotekhnika i ehlektronika. 2010. T. 55. № 8.  S. 982–988.
  2. Fedorenko I.A., Fedorkova N.V., Shashurin V.D., Ivanov Yu.A. Spektraljnihe kharakteristiki subgarmonicheskogo smesitelya radiosignalov na osnove rezonansno-tunneljnogo dioda. // Mater. Mezhdunar. Krihmskoyj konf. «SVCh-tekhnika i telekommunikacionnihe tekhnologii» (KrihMiKo 2011, 12–16 sentyabrya 2011 g., Sevastopolj, Ukraina). 2011. S. 181–182.
  3. Ivanov Yu.A., Gudkov A.G., Agasieva S.V., Meshkov S.A., Sinyakin V.Yu., Makeev M.O. Tekhnologiya radiochastotnoyj identifikacii s passivnihmi metkami v invazivnoyj biosensorike // Mater. 24-yj Mezhdunar. Krihmskoyj konf. «SVCh-tekhnika i telekommunikacionnihe tekhnologii» (KrihMiKo 2014) (Sevastopolj, 7-13 sentyabrya 2014 g.). V 2-kh tomakh. Sevastopolj: Veber. 2014. T. 2. S. 1063–1064.
  4. Sinyakin V.Yu, Makeev M.O., Meshkov S.A. RTD application in low power UHF rectifiers // 2016 Journal of Physics: Conference Series. V. 741. P. 012160.
  5. Makeev M.O., Meshkov S.A., Sinyakin V.Yu., Razoumny Yu.N. Spacecraft Guidance, Navigation and Control Based on Application of Resonant Tunneling Diodes in Nonlinear Radio Signal Converters // 2017 Advances in Astronautical Science. V. 161. P. 475.
  6. Kanaya H., Shibayama H., Suzuki S., Asada M. Fundamental Oscillation up to 1.31 THz in Resonant Tunneling Diodes with Thin Well and Barriers // 2012 Applied Physics Express. V. 5. P.124101.
  7. Maekawa T., Kanaya H., Suzuki S., Asada M. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss // 2016 Applied Physics Express. V. 9. P. 024101.
  8. Wang J., Al-Khalidi A., Zhang C., Ofiare A., Wang L., Wasige E., Figueiredo J.M.L. Resonant Tunneling Diode as High Speed Optical/Electronic Transmitter // In 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT).  Liverpool, UK. 11-13 Sept 2017. P. 1–4. ISBN 9781538627204 (Doi:10.1109/UCMMT.2017.8068497).
  9. Mizuta H., Tanoue T. High-speed and functional applications of resonant tunnelling diodes // In The Physics and Applications of Resonant Tunnelling Diodes. 2006 (New York: Cambridge university press). P. 133.
  10. Nagatsuma T., Fujita M., Kaku A., Tsuji D., Nakai S., Tsuruda K., Mukai T. Terahertz Wireless Communications Using Resonant Tunneling Diodes as Transmitters and Receivers // Proceedings of International Conference on Telecommunications and Remote Sensing (Luxembourg). 2014. V. 1. P. 41.
  11. Srivastava A. Microfabricated Terahertz Vacuum Electron Devices: Technology, Capabilities and Performance Overview // 2015 European Journal of Advances in Engineering and Technology. V. 2. P. 54.
  12. Diebold S., Tsuruda K., Kim J-Y., Mukai T., Fujita M., Nagatsuma T. 2016 Proceedings of SPIE 9856, Terahertz Physics, Devices, and Systems X: Advanced Applications in Industry and Defense (Baltimore). V. 9856 (Washington: SPIE) 98560U.
  13. Obukhov I.A. Neravnovesnihe ehffektih kak osnova funkcionirovaniya tverdoteljnihkh ehlektronnihkh priborov // Diss. … d.f.-m.n. Moskva. 2014. URL: https://diss.unn.ru/files/2014/397/diss-Obukhov-397.pdf.
  14. Sv-vo o gosud. reg. programmih dlya EhVM № 2012661001. dif2RTD. Makeev M.O., Litvak Yu.N., Ivanov Yu.A., Meshkov S.A.,  Migalj D.Eh. 2012.
  15. Hochschule     RheinMain            [of.        sayjt      universiteta          Hochschule          RheinMain]           URL:      https://www.hs-rm.de/en/rheinmainuniversity/people/indlekofer-klaus-michael/research-and-development/wingreen.
  16. Nanohub: largest nanotechnology online resource. URL: https://nanohub.org/resources/rtd.
  17. Esaki. L.; Tsu. R. Superlattice and Negative Differential Conductivity in Semiconductors // IBM Journal of Research and Development. 1970. V. 14. Iss. 1. P. 61–65. URL: https://www.researchgate.net/profile/Raphael_Tsu/publication/224104697_Superlat-tice_and_ Negative_Differential_Conductivity_in_Semiconductors/links/5676e20908ae502c99d2ed9c/Superlattice-and-Negative-DifferentialConductivity-in-Semiconductors.pdf.
  18. Perez-Alvarez R., Garcia-Molliner F. 2004 Transfer Matrix, Green Function and Related Techniques: Tools for the Study of Multilayer Heterostructures (Castello de la Plana: Publicacions de la Universitat Jaume I).
  19. Dubrovskiyj V.G. Teoriya formirovaniya ehpitaksialjnihkh nanostruktur. M.: FIZMATLIT. 2009.
  20. Chris A. Mack Fundamental Principles of Optical Lithography: The Science of Microfabrication , London: John Wiley & Sons. 2007.
  21. Chris A. Mack Field Guide to Optical Lithography, SPIE Field Guide Series. V. FG06, Bellingham, WA: 2006.
  22. Trapashko G. Kontrolj mikrorazmerov v proizvodstve IS. Zadachi i osobennosti // Ehlektronika, Nauka, Tekhnologiya, Biznes. 2011. № 3.
Date of receipt: 5 июля 2018 г.