350 rub
Journal Achievements of Modern Radioelectronics №12 for 2019 г.
Article in number:
Assesment of noise immunity of standart data transmissions IEEE 802.11ac under the influence of interference
Type of article: scientific article
DOI: 10.18127/j20700784-201912-30
UDC: 621.396.2
Authors:

K.D. Titov – Ph.D. (Phys.-Math.), Assistent,

Voronezh State University

E-mail: titovkd@gmail.com

O.N. Zavalishina – Student, 

Voronezh State University

E-mail: onzavalishina@mail.ru

Abstract:

The aim of the work is to assess the noise immunity of the modern wireless data transmission standard IEEE 802.11ac. The structure of the bit stream formed during the transmission of information over a wireless channel over the data link and physical layers of the OSI network model without reference to the type of transmitted information is investigated. Vulnerabilities of open data transmission standards on the example of the IEEE 802.11ac, which can be pilot subcarriers of the OFDM signal and service information elements contained in the header of the transmitted data packet are identified and measures to improve noise immunity are proposed. The analytical dependence of the bit error rate on the noise-to-signal ratio and the interference bandwidth for different modulation levels, coding rates and the structure of the transmitted data packet. These results enable to determine the minimum bandwidth of interference with fixed power depending on the required probability of distortion at which the communication line will be disorganized.

Pages: 191-196
References
  1. Cisco «802.11ac: The Fifth Generation of Wi-Fi» Technical White Paper. August 2012.
  2. Matthew S.G. 802.11ac: A Survival Guide. O'Reilly Media. 2013.
  3. Prasad R. OFDM for wireless communication system. Boston; London: Artech House Publishers. 2004.
  4. Filimonov A.Yu. Postroenie mul'tiservisnykh setey Ethernet. M.: BHV. 2007. [in Russian]
  5. Batyrev I.A. Otsenka vliyaniya sdviga nesushchey chastoty na kachestvo prinimaemogo OFDM-signala. Omskiy nauchnyy vestnik. 2015. № 3. S. 259–262. [in Russian]
  6. Morelli M. Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review. Proceedings of IEEE. 2007. V. 95. № 7. P. 1394–1427.
  7. Nezami M.K. RF Architectures and Digital Signal Processing Aspects of Digital Wireless Transceivers. 2003. 
  8. Simon M.K., Alouini M.S. Digital Communication over Fading Channels – A Unified Approach to Performance Analysis, 1st Ed., Wiley. 2000. 
  9. Lee P.J. Computation of the bit error rate of coherent M-ary PSK with Gray code bit mapping. IEEE Trans. Commun. V. COM-34. 1986. № 5. P. 488–491.
  10. Prokis Dzh. Tsifrovaya svyaz'. Per. s angl. Pod red. D.D. Klovskogo. M.: Radio i svyaz'. 2000. [in Russian]
  11. Sklyar B. Tsifrovaya svyaz'. Teoreticheskie osnovy i prakticheskoe primenenie. Izd. 2-e, ispr.: Per. s angl. M.: Vil'yams. 2007. [in Russian]
  12. Shakhnovich I.V. Sovremennye tekhnologii besprovodnoy svyazi. M.: Tekhnosfera. 2006. [in Russian]
Date of receipt: 25 ноября 2019 г.