350 rub
Journal Achievements of Modern Radioelectronics №12 for 2019 г.
Article in number:
Selective anodizing of an aluminum substrate for powerful HIC
Type of article: scientific article
DOI: 10.18127/j20700784-201912-17
UDC: 621.3.049.776.21
Authors:

А.N. Masyugin – Process Engineer,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

E-mail: albert.masyugin@mail.ru

F.V. Zelenov – Process Engineer,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

А.B. Ivanov – Process Engineer,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

S.О. Konovalov – Process Engineer,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

А.А. Larkov – Head of Sector,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

F.А. Baron – Dr.Sc. (Eng.), Chief Technology Officer,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

А.V. Strezh – Chief Technology,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

R.G. Galeev – Dr.Sc. (Eng.), General Director,

JSC «SPE «Radiosvyaz» (Krasnoyarsk)

E-mail: kniirs1@mail.krs.ru

Abstract:

The use of thin alumina based ceramic substrates (Al2O3) in manufacturing of hybrid integrated circuits (HIC) and multi-chip modules for RF applications brings up a number of issues: high cost, the complexity of forming through holes, limited size of the substrates due to ceramics brittleness. Alumina substrates typically have poor conductivity (25…30 W / (m·K)) insufficient for heat removal from modern crystals utilized in high power RF monolithic integrated circuits (MMIC). 

One possible solution to the above problems would be to use a metal substrate with high mechanical strength and thermal conductivity. The most promising metal for this role in our opinion is aluminum, due to the possibility of forming low temperature high-quality dielectric coating up to hundreds of microns thick on its surface using electrochemical oxidation of aluminum. Local anodizing of the aluminum surface allows the substrate to be used not only as a supporting base, but also as a functional layer for the power bus and ground. Non-anodized sections of aluminum can serve as a perfect heat sinks to mount the powerful RF components on. 

The goal of this work was to develop the process of selective anodizing of aluminum substrate through photoresist mask and then study the compatibility of the obtained alumina structure with the subsequent higher temperature process steps of forming passive circuits of the HIC topology. In this work we examined some technological challenges of selective anodizing of aluminum substrates and its integration with thin-film technology. We integrated passive component microcircuit directly on top of the aluminum substrate with open metal landing pads providing high heat removal capability for mounting of high power integrated circuit chips.

Pages: 112-118
References
  1. Sokol V. Elektrokhimicheskaya alyumooksidnaya tekhnologiya proizvodstva mikroelektronnykh mnogokristal'nykh moduley. Pechatnyy montazh. 2010. V. 4. S. 18–20. [in Russian]
  2. Shimanovich D.L. i dr. Issledovanie teplofizicheskikh i elektrofizicheskikh svoystv pokrytiy na osnove anodnogo oksida alyuminiya, modifitsirovannogo vakuumno-osazhdennymi dielektricheskimi plenkami. Novye materialy i perspektivnye tekhnologii: sbornik materialov Chetvertogo mezhdistsiplinarnogo nauchnogo foruma s mezhdunarodnym uchastiem. V 3-kh tomah. Sektsiya 4. Funktsional'nye materialy. M.: Buki Vedi. 2018. T. 2. S. 775–779. [in Russian]
  3. Sokol V., Turtsevich A., Belous A. Perspektivy ispol'zovaniya alyuminievykh osnovaniy v SVCh-ustroystvakh. Pechatnyy montazh. 2013. V. 1. S. 174–178. [in Russian]
  4. Sokol V.A., Kostyuchenko S.A. Elektrokhimicheskaya tekhnologiya mikro- i nanoelektronnykh ustroystv. Doklady BGUIR. 2014.  № 2 (80). S. 14–22. [in Russian]
  5. Shimanovich D.L., Yakovtseva V.A. Elektrokhimicheskaya alyumooksidnaya tekhnologiya dlya priborov silovoy elektroniki. Doklady BGUIR. 2019. № 3 (121). S. 5–11. [in Russian]
  6. Shimanovich D.L. Tekhnologicheskie rezhimy formirovaniya dopolnitel'nykh dielektricheskikh plenok na poristoy poverkhnosti alyumooksidnykh osnovaniy i issledovanie elektrofizicheskikh i teplofizicheskikh kharakteristik modifitsirovannykh pokrytiy. Fundamental'nye problemy radioelektronnogo priborostroeniya. 2017. T. 17. № 2. S. 573–576. [in Russian]
  7. Shimanovich D.L., Chushkova D.I., Sokol V.A. Tekhnologicheskie priemy povysheniya termicheskoy ustoychivosti pri formirovanii tolstosloynykh nanoporistykh anodnykh oksidov alyuminiya. Sb. nauch. trudov V Mezhdunar. nauch. konf. «Materialy i struktury sovremennoy elektroniki». Minsk. 10-11 okt. 2012 g. S. 199–202. [in Russian]
  8. Shimanovich D.L. Optimizatsiya metodov formirovaniya tolstosloynykh dielektricheskikh pokrytiy na osnove anodnogo oksida alyuminiya pri elektrokhimicheskom anodirovanii shirokoformatnykh Al-podlozhek i teploprovodyashchikh osnovaniy s radiatorami. Fundamental'nye problemy radioelektronnogo priborostroeniya 2016. T. 16. № 3. S. 116–119. [in Russian]
  9. Sokol V.A., Vorob'eva A.I. Mnogokristal'nye moduli na anodirovannoy alyuminievoy podlozhke. Tekhnologiya i konstruirovanie v elektronnoy apparature. 2002. № 2. S. 40–45. [in Russian]
  10. Shimanovich D.L. Elektrokhimicheskiy sintez svobodnykh dvukhsloynykh Al2O3-plastin dlya SVCh-sistem. Fundamental'nye problemy radioelektronnogo priborostroeniya. 2013. T. 13. № 3. S. 182–185. [in Russian]
  11. Lazaruk S.K. Poristoe anodirovanie alyuminievykh plenok s ispol'zovaniem fotolitograficheskoy maski pri vysokikh napryazheniyakh formovki. Doklady BGUIR. 2013. № 3 (73). S. 52–57. [in Russian]
  12. Yeo S.K., Kwon Y.S. X-band high-power HEMT SPDT switch with selectively anodised aluminium substrate. Electron. Lett. 2010. V. 46. № 24. P. 1627–1629. DOI:10.1049/el.2010.1929.
  13. Yeo S.K., Chun J.H., Kwon Y.S. A 3-D X-Band T/R module package with an anodized aluminum multilayer substrate for phased array radar applications. IEEE Trans. Adv. Packag. 2010. V. 33. № 4. P. 883–891. DOI:10.1109/TADVP.2010.2049109.
  14. Yeo S.K. et al. An X-band high power amplifier module package using selectively anodized aluminum substrate. Proceedings of the 37th European Microwave Conference, EUMC. 2007. P. 1357–1360. DOI: 10.1109/EUMC.2007.4405455.
  15. Shin S.H. et al. PCS power amplifier module package using selectively anodized aluminum substrate. Proceedings of the 36th European Microwave Conference, EuMC 2006. P. 1767–1770. DOI: 10.1109/EUMC.2006.281485.
  16. Shin S.H., Kwon Y.S. Selectively anodized aluminum substrates for microwave power module package. Proceedings - Electronic Components and Technology Conference. 2005. V. 2. P. 1904–1908. DOI: 10.1109/ectc.2005.1442058.
  17. Kim K.M. et al. Embedded IC technology for compact packaging inside aluminum substrate (pocket embedded packaging). Proceedings of the 37th European Microwave Conference, EUMC. 2007. P. 1125–1128. DOI: 10.1109/EUMC.2007.4405396.
  18. Yook J.M. et al. Integrated passive devices on the selectively anodized aluminum oxide. European Microwave Week 2009, EuMW 2009: Science, Progress and Quality at Radiofrequencies, Conference Proceedings – 39th European Microwave Conference, EuMC 2009. P. 1654–1657. DOI: 10.1109/EUMC.2009.5296509.
  19. Yook J.M., Kim K.M., Kwon Y.S. Suspended spiral inductor and band-pass filter on thick anodized aluminum oxide. IEEE Microw. Wirel. Components Lett. 2009. V. 19. № 10. P. 620–622. DOI: 10.1109/LMWC.2009.2029735.
  20. Kim K.M., Kwon Y.S. Ultra thin power amplifier module with embedded passives and actives on aluminum substrate. European Microwave Week 2009, EuMW 2009: Science, Progress and Quality at Radiofrequencies, Conference Proceedings – 39th European Microwave Conference, EuMC 2009. P. 1361–1364. DOI: 10.1109/EUMC.2009.5296214.
  21. Sohn B.I., Shin S.H., Kwon Y.S. Hybrid distributed amplifier using MCM-D based on selectively anodized aluminium substrate. 2007 European Radar Conference, EURAD. P. 339–342. DOI: 10.1109/EURAD.2007.4405006.
  22. Yeo S.K. et al. A compact high power T/R module for X-band phased array radar applications using an anodized aluminum substrate. European Microwave Week 2009, EuMW 2009: Science, Progress and Quality at Radiofrequencies, Conference Proceedings – 39th European Microwave Conference, EuMC 2009. P. 1365–1368. DOI:10.1109/EUMC.2009.5296215.

 

Date of receipt: 25 ноября 2019 г.