350 rub
Journal Achievements of Modern Radioelectronics №11 for 2019 г.
Article in number:
Approximation of signal attenuation functions in empirical models
Type of article: scientific article
DOI: 10.18127/j20700784-201911-09
UDC: 621.391
Authors:

S.V. Dvornikov – Dr.Sc. (Eng.), Professor,

Department of Radio Communication,

Military Academy of Communications Named After S.M. Budyonny

E-mail: practicdsv@yandex.ru

A.V. Kraychko – Dr.Sc. (Eng.), Professor,

Department of Radio Engineering and Optoelectronic Complexes,

Saint Petersburg State University of Aerospace Instrumentation

E-mail: kaf21@guap.ru

P.V. Timashov – Teacher,

Department of Information Collection and Processing Systems,

Military Space Academy Named After A.F. Mozhaysky

E-mail: timashov_ilidan@mail.ru

Abstract:

Calculation of signal attenuation in broadband access networks based on approximation of functions obtained in accordance with COST231–Hata and Okamura–Hat models is considered. The results of the study and data of mathematical modeling in Matcad environment are given. Proposals for practical application have been developed and prospects for its use have been defined.

The success of the promotion of wireless communication technologies is determined by the level of development of telecommunication infrastructure of the regions. The transition to a new generation of standard is the additional placement of base stations on already installed antenna masts. This approach is irrational because it does not take into account the specifics and capabilities of new equipment. The preparation of the territorial plan is a rather expensive procedure requiring a high level of technical expertise. This issue is particularly relevant for companies promoting broadband radio access networks. In view of these circumstances, this article proposes a simplified approach to calculation of signal attenuation in broadband radio access networks, based on the COST231–Hata, Okamura–Khata model in the range from 1,5 GHz, which corresponds to modern radio stations used in broadband radio access networks. The developed approach based on the approximation of Okamura–Hat and COST231–Hata models has a fairly simple analytical description, and the error of approximation based on it of the attenuation function does not exceed 1 dB within the whole range of permissible values.

Pages: 55-63
References
  1. V Rossii   vozmozhen       zapusk televeshchaniya            v          formate            LTE.    Redaktsiya       Mediasat.         31        May,    2016.    URL:http://mediasat.info/2016/05/31/tv-lte-ru (Svobodnyy dostup). [in Russian]
  2. Svistunov A.S. Empirical radio wave propagation models for analysis of intrasystem electromagnetic compatibility and safety of microcellular communication networks. J. Belarus. State Univ. Phys. 2018. № 2. P. 107–116.
  3. Dvornikov S.V., Vlasenko V.I., Muravtsov A.A., Dvornikov S.S., Kotov A.A. Predlozheniya po primeneniyu formuly Vvedenskogo dlya rascheta zatukhaniy radioliniy peredachi video. Voprosy radioelektroniki. Ser. Tekhnika televideniya. 2018. № 2. S. 105–111. [in Russian]
  4. Nadir Z., Elfadhil N., Touati F. Path Loss Determination Using the Okumurahata and Spline Interpolation Models for Missing Data for Oman. Proceedings of the World Congress on Mechanical Engineering. July 2-4, 2008. V. I WCE 2008. London. UK.
  5. Dvornikov S.V. Uproshchennoe predstavlenie modeli Hata dlya rascheta zatukhaniya signala na otkrytykh trassakh. Informatsiya i kosmos. 2017. № 3. S. 6–10. [in Russian]
  6. Banimelhem O., Muneer M. Al-Zubi, Mohammad S. Al Salameh Hata Path Loss Model Tuning for Cellular Networks in Irbid City. Computer and Information Technology. IEEE Int. conf. (Liverpool, 26 –28 Oct., 2015). Liverpool. 2015. P. 1646 –1650. DOI: 10.1109/CIT/IUCC/DASC/PICOM.2015.248.
  7. Hata M. Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Tech. 1980. V. 29. № 3. P. 317–325.
  8. Dvornikov S.V., Pshenichnikov A.V., Pogorelov A.A. i dr. Analiticheskaya model' zatukhaniya signalov v detsimetrovom diapazone voln. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2019. № 1. S. 39–44. [in Russian]
  9. Okumura-Hata propagation prediction model for UHF range, in the «Prediction methods for the terrestrial land mobile service in the VHF and UHF bands». ITU-R Recommendation. P. 529-2. Geneva: ITU. P. 5–7, 1995.
  10. Dvornikov S.V., Litkevich G.Yu., Romanenko P.G. i dr. Empiricheskiy podkhod k raschetu zon pokrytiya tsifrovykh televizionnykh peredatchikov. Voprosy radioelektroniki. Ser. Tekhnika televideniya. 2017. V. 3. S. 70−75. [in Russian]
  11. COST Action 231 Digital mobile radio towards future generation systems. Final report. 1999.
  12. Dvornikov S.V., Pogorelov A.A., Romanenko P.G., Kochetkov A.O. i dr. Model' zatukhaniya signalov dlya planirovaniya zon pokrytiya tsifrovykh televizionnykh peredatchikov. Voprosy radioelektroniki. Ser. Tekhnika televideniya. 2018. V. 1. S. 49−53. [in Russian]
  13. Pedzhman Roshan, Dzhonatan Lieri Osnovy postroeniya besprovodnykh lokal'nykh setey standarta 802.11. Rukovodstvo Cisco 802.11 Wireless Local-Area Network Fundamentals. M.: Vil'yams. 2004. [in Russian]
  14. Isabona Joseph, Koneha C.C. Urban Area Path loss Propagation Prediction and Optimisation Using Hata Model at 800MHz e-ISSN: 2278-4861. V. 3. № 4 (Mar. – Apr. 2013). P. 08–18. URL: www.iosrjournals.org.
  15. Dvornikov S.V., Dvornikov A.S., Kotov A.A., Muravtsov A.A. Analiz modeley zatukhaniya radiosignalov detsimetrovykh voln. Informatsiya i kosmos. 2018. № 2. S. 6–11. [in Russian]
  16. Medeisis A., Kajackas A. Adaptation of the universal propagation prediction models to address the specific propagation conditions and the needs of spectrum managers. Antennas &Propagation (AP 2000), Millennium Conference. 9–14 April 2000. Davos.
  17. Nadir Z., Idrees M. Ahmad Path loss Determination Using Okumura-Hata Model and Cubic Regression for Missing Data for Oman. Proceeding of IMECS. 2010. V. 2.
  18. Dvornikov S.V., Balykov A.A. Predlozheniya po prakticheskoy realizatsii modeli zatukhaniya signalov v detsimetrovom diapazone voln. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2019. № 1. S. 45–50. [in Russian]
  19. Sharma H.K., Sahu S.H., Sharma S. Enhanced cost 231 propagations model in wireless International Journal of Applied Computer Technology (0975 - 8887). April 2011. V. 19. № 6.
  20. Yuvraj Singh Comparison of Okumura, Hata and COST-231 Models on the Basis of Path Loss and Signal Strength International Journal of Computer Applications (0975-8887). December 2012. V. 59. № 11.
  21. Kumar M., Kumar V., Malik S. Performance and analysis of propagation models for predicting RSS for efficient handoff. International journal of advanced scientific research & technology. February 2012. V. 1. № 2.
  22. Dolukhanov M.P. Rasprostranenie radiovoln. M.: Sov. radio. 1972. [in Russian]
  23. Dvornikov S.V., Osadchiy A.I., Dvornikov S.S., Rodin D.V. Demodulyatsiya signalov na osnove obrabotki ikh modifitsirovannykh raspredeleniy. Kontrol'. Diagnostika. 2010. № 10. S. 46–54. [in Russian]
  24. Patent RF № 2454014. Sposob demodulyatsii signalov s otnositel'noy fazovoy modulyatsiey na osnove adaptivnogo poroga. Dvornikov S.V., Dvornikov S.S., Ustinov A.A. i dr. Prior. ot 20.06.2012 g. [in Russian]
  25. Dvornikov S.V., Ustinov A.A., Pogorelov A.A., Romanenko P.G., Dvornikov S.S., Ishin D.M. Dekodirovanie samoortogonal'nykh kodov. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2012. № 1. S. 93–100. [in Russian]
  26. Dvornikov S.V., Ustinov A.A., Dvornikov S.S., Ishin D.M. Analiz effektivnosti blokovykh kodov. Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2011. № 1. S. 63–73. [in Russian]
Date of receipt: 6 октября 2019 г.