350 rub
Journal Achievements of Modern Radioelectronics №11 for 2019 г.
Article in number:
Possibilities and criteria of optimization of the ground radio line of communication with the use of its generalized mathematical model
Type of article: scientific article
DOI: 10.18127/j20700784-201911-06
UDC: 621.396; 621.396.677; 51-748
Authors:

A.N. Yakimov – Dr.Sc. (Eng.), Professor,

Department «Design and Technologies of Electronic and Laser Facilities»,

Saint-Petersburg State University of Aerospace Instruments

E-mail: y_alder@mail.ru

A.R. Bestugin – Dr.Sc. (Eng.), Professor, Director,

Institute of Radio Engineering Electronics and Communications,

Saint-Petersburg State University of Aerospace Instruments

E-mail: fresguap@mail.ru

I.A. Kirshina – Ph.D. (Econ.), Associate Professor,

Department «Design And Technologies of Electronic and Laser Facilities»,

Saint-Petersburg State University of Aerospace Instruments

E-mail: ikirshina@mail.ru

Abstract:

In ground radio line of communication conditions of propagation of electromagnetic waves are diverse and complex, and they affect differently depending on what the length of the emitted electromagnetic wave and the location of the antennas of the receiver and transmitter. As a result, the research and optimization of such lines with the use of mathematical models is of great interest. The possibility of optimization of ground radio line of communication by methods of mathematical modeling is investigated. The article presents the results of the study of the ground radio line of communication line in centimeter and millimeter wave ranges using its generalized mathematical model, taking into account the complex structure of the electromagnetic field at the earth's surface. The possibilities of optimizing the radio line using a systematic approach is evaluated. The optimization criteria providing the best characteristics of the ground radio line of communication are proposed. The mutual spatial position and dimensions of the antennas of the receiver and transmitter found as a result of modeling allows to increase the level and stability of the received signal in the given operating conditions. The obtained results can be used in the design of ground radio line of communication.

Pages: 36-42
References
  1. Feynberg E.L. Rasprostranenie radiovoln vdol' zemnoy poverkhnosti. M.: Nauka. 1999. [in Russian]
  2. Shkol'nyy L.A., Anfinogenov A.Yu. Metody matematicheskogo modelirovaniya radiolokatsionnykh izobrazheniy iskusstvennykh raspredelennykh ob"ektov. Zarubezhnaya radioelektronika. 1998. № 2. S. 49–58. [in Russian]
  3. Bestugin A.R., Yakimov A.N., Kirshina I.A., Nerobeev A.V. Issledovanie vliyaniya antenny na kharakteristiki nazemnoy radiolinii svyazi. Uspekhi sovremennoy radioelektroniki. 2018. № 12. S. 145–150. DOI 10.18127/j20700784-201812-29. [in Russian]
  4. Detkov A.N., Nitsak D.A. Metod matematicheskogo modelirovaniya polyarizatsionnykh portretov iskusstvennykh raspredelennykh ob"ektov. Radiotekhnika 2007. № 11. S. 77–81. [in Russian]
  5. Borzov A.B., Likhoedenko K.P., Karakulin Yu.I., Suchkov V.B. Matematicheskoe modelirovanie vkhodnykh signalov bortovykh sistem blizhney radiolokatsii ot podstilayushchikh poverkhnostey na osnove ikh mnogotochechnykh modeley. Uspekhi sovremennoy radioelektroniki. 2017. № 4. S. 48–57. [in Russian]
  6. Borzov A.B., Suchkov V.B., Shakhtarin B.I., Sidorkina Yu.A. Matematicheskoe i imitatsionnoe modelirovanie vkhodnykh signalov sistem blizhney radiolokatsii. Radiotekhnika i elektronika. 2014. T. 59. № 12. S. 1195–1208. [in Russian]
  7. Kirshina I.A., Yakimov A.N., Bestugin A.R. Obobshchennaya matematicheskaya model' nazemnoy radiolinii svyazi. Volnovaya elektronika i  infokommunikatsionnye sistemy: XXII mezhdunar. nauch. konf. GUAP: sb. statey: v 2 ch. Ch. 2. SPb.: GUAP. 2019. S. 115–120. [in Russian]
  8. Batishchev D.I. Metody optimal'nogo proektirovaniya. M.: Radio i svyaz'. 1984. [in Russian]
  9. Yanshin A.A. Teoreticheskie osnovy konstruirovaniya, tekhnologii i nadezhnosti EVA. M.: Radio i svyaz'. 1983. [in Russian]
  10. Ladrom O., Feurstein M.J., Rappaport T.S. A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment. IEEE Trans. Antennas Propagat. 1996. V. 44. P. 341–351.
  11. Hata M. Empirical formula for propagation loss in land mobile radio service. IEEE Trans. Veh. Technol. 1980. V. 29. № 3. P. 317–325.
  12. Akhiyarov V.V., Borzov A.B., Suchkov V.B., Shakhtarin B.I., Sidorkina Y.A. Calculation of the backscattered field by the method of the physical diffraction theory in the problem of diffraction from impedance objects. Journal of Communications Technology and Electronics. 2015. V. 60. № 12. S. 1297–1304.
  13. Bestugin A.R., Kirshina I.A., Nerobeev A.V., Yakimov A.N. Otsenka pomekhozashchishchennosti mikrovolnovoy antenny metodom matematicheskogo modelirovaniya. Radiotekhnika. 2017. № 5. S. 32–37. [in Russian]
Date of receipt: 6 октября 2019 г.