350 rub
Journal Achievements of Modern Radioelectronics №4 for 2017 г.
Article in number:
Antenna array metamaterial technologies
Authors:
Yu.V. Koltzov - Dr.Sc. (Eng.), FSUE Federal Scientific and Production Center Measuring System Research Institute Named After Yu.E. Sedakov E-mail: koltzovyv@mail.ru
Abstract:
In this work, we report a novel class of antenna arrays based on metamaterials ensuring electrical beam controlling in wide angle range. We analyses variants of array fabrication. First variant represent linear array in form of transmission line composed on composite right/left-handed (CRLH) structures including varactor diodes which applies reverse voltage to every elements of array on fixed frequency. The signal on the second array variant is supplies to all array elements. On the array superimposes the «mask» providing with radiation only specify elements which array beam forming for different radiation angle. Radiation process are controls microwave tuned resonators oriented above everyone array elements. The «MESA» metamaterial antenna array is third variant of array with electrical beam scanning. The frequency range of metamaterial arrays may be both 1-2 GHz and 75-100 GHz. Metamaterial array applications in location are open new capabilities removing unac-ceptable traditional phased arrays: cost, dimensions and weight.
Pages: 30-47
References

 

  1. Brookner E. Metamaterial Advances for Radar and Communications // Microwave Journal. 2016. November. V. 59. № 11. P. 22-40.
  2. Pendry J.B. Negative Refraction Makes a Perfect Lens // Physical Review Letters. 2000. October. V. 85. № 18. P. 3966-3969.
  3. Marqués R.R., Martín F., Sorolla M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications.  Wiley. 2008.
  4. Govind S. Realizing the Potential of Metamaterials // Raytheon Technology Today Magazine. 2012. № 1. R. 24-27.
  5. Derov J.S., Crisman E.E., Drehman A.J. Metamaterials and Their RF Properties // Proc. 2008 Antenna Applications Symposium. V. 2. September. P. 176-189.
  6. Sljusar V. Perspektivnye tekhnologii antennykh reshetok mobilnykh terminalov sputnikovojj svjazi // Tekhnologii i sredstva svjazi. 2014. № 4. S. 64-68.
  7. Clarke P. Silicon Radar seeks funds for 120 GHz push // EE Times Europe News. 2015. October 12.
  8. MACOM and MIT Lincoln laboratory announce successful field tests of MPAR technology // Microwave Journal. 2015. September 16.
  9. Morra J. Multi-Function Phased-Array Radar System Completes Field Trials // Microwaves and RF. 2015. October 15.
  10. Howard C. MIT uses MACOM RF tiles in test bed for DARPA ACT radar development // Military Aerospace Electronics. Intelligent Aerospace. 2015. November 12.
  11. Howard C. MIT tests, issues first commercial production order for SPAR tiles for radar to benefit FAA, NOAA // Military Aerospace Electronics. Intelligent Aerospace. 2015. November 11.
  12. Kundtz N. Next Generation Communications for Next Generation Satellites // Microwave Journal. 2014. August. V. 57. № 8.
  13. MSA-T // Intellectual Ventures. URL: www.intellectualventures.com/inventions-patents/our-inventions/msa-t.
  14. Johnson M.C., Brunton S.L., Kundtz J.N., Kundtz N.B. Sidelobe Cancelling for Optimization of Reconfigurable Holographic Metamaterial Antenna // IEEE Trans. Antennas and Propagation. 2015. April. V. 63. № 4. P. 1881-1886.
  15. Pendry J.B. Metamaterials // International Radar Conference. Keynote. October 2014.
  16. US Patent 2014/0266946. Int. Cl. H01Q 13/22 (2006.1) Surface scattering antenna improvements / Bily A., Dallas J., Hannigan R.J. et. al. 2014. September 18.
  17. Schurig D., Mock J.J., Smith D.R. Electric?field-coupled resonators for negative permittivity metamaterials // Applied Physics Letters. 2006. January. V. 88. № 4. R. 041109-1-041109-3.
  18. Sljusar V. Metamaterialy v antennojj tekhnike: osnovnye principy i rezultaty // Pervaja milja. 2010. № 3-4. S. 44-60.
  19. Chen H. - T., Padilla W.J., Zide J.M.O. et. al. Active terahertz metamaterial devices // Nature. 2006. November. V. 444. № 30. P. 597-600.
  20. Naqui J. Symmetry Properties in Transmission Lines Loaded with Electrically Small Resonators. Circuit Modeling and Applications. Springer. 2016.
  21. Padilla W.J., Aronsson M.T., Highstrete C. et. al. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations // Physical Review B. 2007. V. 75. R. 041102-1-041102-4.
  22. Hand T.H. Design and Applications of Frequency Tunable and Reconfigurable Metamaterials // Dissertation PhD. Department of Electrical and Computer Engineering in the GraduateSchool of DukeUniversity. 2009.
  23. Hand T.N., Gollub J., Sajuyigbe S. et. al. Characterization of complementary electric field coupled resonant surfaces // Applied Physics Letters. 2008. V. 93. R. 212504-1-212504-3.
  24. Https://www.researchgate.net/figure/243457537_fig2_Figure-1-Unit-cells-and-equivalent-LC-circuit-models-a-b-ELC-resonator-c-d.
  25. Https://www.researchgate.net/figure/256457049_fig1_Figure-1-Design-of-the-Z-shaped-resonator-from-the-ELC-one-The-geometrical-dimensions.
  26. Echodyne brings first metamaterials based radar antenna to market // Microwave Journal. 2015. 7 December.
  27. Http://echodyne.com/products.
  28. Meta-material (MESA) vs Active (AESA). URL: http://spendergast.blogspot.ru/2015/04/metamaterials-for-radars-and-rcs.html
  29. Http://spendergast.blogspot.ru/2015/12/metamaterials-based-radar-antenna. html.
  30. Http://www.nytimes.com/2015/03/24/science/the-waves-of-the-future-may-bend-around-metamaterials.html-ref=science&_r=2.
  31. MESA-Radars & Subsystems. http://echodyne.com/products
  32. Brookner E. Radar and Phased Array Breakthroughs // Microwave Journal. 2015. November. V. 58. № 11.
  33. Http://www.prnewswire.com/news-releases/echodyne-announces-development-of-airborne-detect-and-avoid-radar-for-small-unmanned-aircraft-systems-300259587.html.
  34. Https://plus.google.com/communities/107321552440751634622.
  35. Http://forums.eagle.ru/showthread.php-p=2765788#post2765788.
  36. Echodyne Releases Breakthrough Ultra-Low C-SWAP Electronically Scanning Radar. URL: http://www.prnewswire.com/news-releases/echodyne-releases-breakthrough-ultra-low-c-swap-electronically-scanning-radar-300259636.html
  37. Radar could be the answer to beyond visual line-of-sight woes // Drone360 magazine. URL: http://www.drone360mag.com/news-notes/2016/05/echodyne-releases-small-radar-that-could-be-big-for-drones
  38. Echodyne offers detect and avoid radar for small UAS. URL: http://geodesist.ru/forum/threads/echodyne-offers-detect-and-avoid-radar-for-small-uas.53516
  39. Sychev V. Sozdan legkijj radar dlja malykh bespilotnikov // N+1. 2016. 10 maja.
  40. Echodyne Announces First Successful Airborne Detect and Avoid Radar Test on a Small Drone // Microwave Journal. 2016. November 9.
  41. Metamaterial Electronically Scanning Array // PRNewswire. 2015. December 4.
  42. Metamaterial Antenna Lens will allow a flat lens to act like a curved lens. URL: http://nextbigfuture.com/2014/05/metamaterial-antenna-lens-will-allow.html
  43. Http://www.thinkom.com/antenna-products/thinsat/300-2.
  44. Http://www.thinkom.com/antenna-products/thinsat.