350 rub
Journal Achievements of Modern Radioelectronics №12 for 2017 г.
Article in number:
Comparison of methods of tropospheric delay estimation of GNSS signals
Type of article: scientific article
UDC: 621.396
Authors:

V.B. Kashkin – Dr.Sc. (Eng.), Professor, Siberian Federal University (Krasnoyarsk)
E-mail: rtcvbk@rambler.ru

V.M. Vladimirov – Dr.Sc. (Eng.), Chief Research Scientist, Federal Research Center, Siberian Branch of RAS
E-mail: vlad@ksc.krasn.ru

A.A. Romanov – Ph.D. (Eng.), Associate Professor, Siberian Federal University (Krasnoyarsk)

E-mail: AARomanov@sfu-kras.ru

Abstract:

The paper is focused on comparison of results of estimation of the GNSS troposphere delay. The four techniques were discussed: the delay according to the International Service of Gobal Navigation Satellite Systems (IGS); the delay which was found using vertical profiles of the atmosphere from satellite data; the delay based on the models of Hopfield and Saastamoinen. It was found that the satellite profiles of the atmosphere provide the most prompt and accurate estimation of tropospheric delay of GNSS signals.

Pages: 62-66
References
  1. Perov A.I., Harisov V.N. GLONASS. Principy postroenija i funkcionirovanija. M.: Radiotehnika. 2010.
  2. Dow J.M., Neilan R.E., Gendt G. The International GPS Service (IGS): Celebrating the 10th Anniversary and Looking to the Next Decade // Adv. Space Res. 2005.3. V. 36. P. 320–326.
  3. URL: https://igscb.jpl.nasa.gov/components/data.html.
  4. Bevis M., Businger S., Herring T.A., Rocken C., Anthes R.A., Ware R.H. GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System // Journal Geophysical Research. 1992. V. 97. P. 15787–15801.
  5. Kouba J. Guide to using international GNSS service (IGS) products. Geodetic Survey Division. Natural Resources Canada. May 2009. URL: http://igscb.jpl.nasa.gov/components/usage.html.
  6. Hopfield H.S. Two-Quartic Tropospheric Refractivity Profile for Correcting Satellite Data // Journal Geophysical Research. 1969. V. 74. № 18. P. 4487–4499.
  7. Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites // The Use of Artificial Satellites for Geodesy. Geophys. Monogr. Ser. AGU. Washington. D.C. 1972. V. 15. P. 247–251.
  8. Kashkin V.B., Vladimirov V.M., Klykov A.O. Ocenka troposfernoj zaderzhki signalov global'nyh navigacionnyh sputnikovyh sistem//Uspehi sovremennoj
    radiojelektroniki. 2014. № 5. S. 37–42.
  9. Kashkin V.B., Klykov A.O. Postroenie kart troposfernoj zaderzhki signalov GLONASS/GPS po dannym sputnikovogo distancionnogo zondirovanija atmosfery // Zhurnal sibirskogo federal'nogo Universiteta «Tehnika i tehnologii». 2014. T. 7. S. 839–845.
  10. NOAA TOVS and ATOVS. URL: http://www.class.ngdc.noaa.gov/data_available/tovs_atovs/index.htm
  11. Kondrat'ev K.Ja. Sputnikovaja klimatologija. L.: Gidrometeoizdat. 1983.
  12. Ahn M-H., Kim M-J., Chung C.-Y., Suh A.-S. Operational Implementation of the ATOVS Processing Procedure in KMA and Its Validation // Adv. in Atmos. Sci. 2003. V. 20. № 3. P. 398–414.
  13. Global Data Assimilation System (GDAS1) Archive Information. URL: http://ready.arl.noaa.gov/gdas1.php.
  14. Kim B.-Ch., Tinin M.V. Vlijanie ionosfernyh neodnorodnostej na tochnost' dvuhchastotnyh sistem GPS // Geomagnetizm i ajeronomija, 2007. T. 46. № 2. S. 1–6.
Date of receipt: 16 ноября 2017 г.