350 rub
Journal Achievements of Modern Radioelectronics №1 for 2017 г.
Article in number:
Frequency-scan array antennas of three-dimensional radars
Authors:
A.V. Suchkov - Leading Engineer, Lianozovo Electromechanical Plant Research and Production Corporation (Moscow) E-mail: avsu@bk.ru
Abstract:
The most modern three-dimensional radars are intended for application as radar data source for air traffic control and airspace moni-toring systems. Such radars for the purpose of their use in any climatic areas are generally built on the principle of unattended stations, which are able to function without the participation of technical personnel and to provide the formation of a common in-formation space about the condition of the air situation. Obviously, that in such systems it is desirable to have a reliable, maintenance-free, lightweight antennas without controlled units with the lowest price. For these reasons, the method of frequency scanning continues to attract developers attention, who design antenna systems. In the process of development the theory and technique of three-dimensional detection radars, have been created radars, which have single-channel frequency-scan waveguide array antennas. They have mechanical rotation in azimuth plane and frequency-controlled beam position in elevation plane to determine three coordinates of air objects. However, toughening of requirements to the value of the root-mean-square error in height measurement excludes the possibility of previously developed antennas complete borrowing to use them in the composition of new radar modifications. The reason for this is that their single-channel construction, that provides frequency scan multi-beam directional pattern formation in the vertical plane, allows to measure altitude by interpolation of elevation angles with a simultaneous comparison of the echo signal amplitudes received by independent channels of adjacent beams. A well-known disadvantage of this method in radars with frequency scanning is that the possibility of increasing the accuracy of altitude measurement is limited due to presence of decorrelation of compared echo signals in adjacent beams, which are formed at spaced frequencies. Also, the side lobe level of the radiation pattern in the frequency scanning plane which in most cases about 20 dB and which is provided by a beamforming network (BFN) is currently insufficient to ensure the requirements of noise immunity. Therefore, in connection with the increasing requirements of modern three-dimensional radars in part of accuracy of coordinates de-finition and renewal of the radar data we need to use a scanning monopulse antennas with narrow beam, low side lobes and maximum gain. The significant distortion of the amplitude and phase distributions and losses in the BFN terminal load are typical disad-vantages of series-fed monopulse frequency-scan array antennas. Parallel-fed monopulse antennas are involves the use of delay lines on each of the outputs of distribution system, that lead to design and technological difficulties in the development process. For elimination of such disadvantages the carry out of frequency scanning power distribution system fundamental processing is proposed. This allows to realize the sum-difference BFN and, accordingly, the monopulse method of altitude measurement in each beam at a fixed frequency of the echo signal.
Pages: 63-73
References

 

  1. Spravochnik po radiolokacii. Kn. 1 / Pod red. M.I. Skolnika: per. s angl. M.: Tekhnosfera. 2014.
  2. KHansen R.S. Fazirovannye antennye reshetki. Izd. 2-e. M.: Tekhnosfera. 2012.
  3. Johnson R.C., Jasik H. Antenna engineering handbook. Ed. 3. New York: McGrow-Hill Book Company. 1993.
  4. Borodin N.D., Kovalev V.T., Lenci JU.I., Nemoljaev A.I. Volnovodno-shhelevye antennye reshetki s chastotnym skanirovaniem // Materialy 17-jj nauch.-tekhnich. konf. VNI-IRT. M.: OAO «VNIIRT». 2007. S. 312-317.
  5. Trassovyjj radiolokacionnyjj kompleks «Sopka-2». URL: http://www.lemz.ru/views/solutions/orvd/trlkp/sopka2. 25.12.2016.
  6. Voskresenskijj D.I., Gostjukhin V.L., Maksimov V.M., Ponomarev L.I. Ustrojjstva SVCH i antenny / Pod red. D.I. Voskresenskogo. M.: Radiotekhnika. 2016.
  7. Indenbom M.V. Antennye reshetki podvizhnykh obzornykh RLS. Teorija, raschet, konstrukcii. M.: Radiotekhnika. 2015.
  8. Vendik O.G., Parnes M.D. Antenny s ehlektricheskim skanirovaniem. Vvedenie v teoriju / Pod red. L.D. Bakhrakha. M.: Radiotekhnika. 2001.
  9. Oruzhie Rossii. M.: Voennyjj parad. 2000. S. 570-572.
  10. Friedman N. The Naval Institute Guide to World Naval Weapon Systems. Publisher: Naval Institute Press. 2006.
  11. Voprosy perspektivnojj radiolokacii / Pod red. A.V. Sokolova. M.: Radiotekhnika. 2003.
  12. RLS «Podberezovik-EHT1». RLS «Fregat-MAEH-4K». URL: http://concern-agat.ru/produktsiya/radiolokatsiya. 25.12.2016.
  13. Nemoljaev A.I., Kushhev I.M. Volnovodno-poloskovyjj napravlennyjj otvetvitel i ego primenenie na SVCH. // Materialy 17-jj nauch.-tekhnich. konf. VNIIRT. M.: OAO «VNIIRT». 2007. S. 320-324.
  14. Patent № 2284079 RF. Antenna chastotnogo skanirovanija / Lenci JU.I., SHkolnik A.I. Opubl. 20.09.2006. Bjul. № 26.
  15. Suchkov A.V. Imitacionnoe modelirovanie ehffekta normali v antennykh reshetkakh s chastotnym skanirovaniem // Materialy 15-jj Mezhdunar. konf. «Aviacija i kosmonavtika - 2016». M.: MAI. 2016. S. 367-368.
  16. Nikolaev S.F., Sinicyn E.A., Sinicyn V.A. Radiolokator «Nizove» obespechit bezopasnost na vzletnojj polose // Innovacionnaja Rossija. Issledovanija i razrabotki. 2009. № 9. S. 18-19.
  17. Radiotekhnicheskie sistemy navigacii i posadki. Stacionarnyjj posadochnyjj radiolokator «PRL-27S». Mobilnyjj posadochnyjj radiolokator «PRL-28M». URL: http://www.vniira.ru/doc/catalogue/1188.pdf. 25.12.2016.
  18. Patent № 2556708 RF. Posadochnyjj radiolokator / Ivanov V.P., Korol V.M., Sinicyn E.A., Korshunov A.JU. Opubl. 20.07.2015. Bjul. № 20.
  19. Patent № 2470419 RF. Linejjnaja antenna s chastotnym skanirovaniem / Nemoljaev A.I., Vitkov M.G. Opubl. 20.12.2012. Bjul. № 35.
  20. Leonov A.I., Fomichev K.I. Monoimpulsnaja radiolokacija. Izd. 2-e, pererab. i dop. M.: Radio i svjaz. 1984.
  21. Patent № 2490760 RF. Monoimpulsnaja antenna s chastotnym skanirovaniem / Borodin N.D., Isakov M.V. Opubl. 20.08.2013. Bjul. № 23.
  22. Kinsey R. An Edge-Slotted Waveguide Array with Dual-Plane Monopulse // IEEE Trans. Antennas Propagat. Mar. 1999. V. 47. № 3. P. 474-481.
  23. Peters F.D.L., Tatu S.O., Denidni T.A. Design of Beamforming Slot Antenna Arrays Using Substrate Integrated Waveguide // IEEE Conference Publications. Antennas and Propagation Society International Symposium. 2012. P. 1-2.
  24. Wang H., Ni J., Sun W.Z., Ma X.F., Sheng W.X. A Novel Frequency Scanning Monopulse Microstrip Antenna Array // 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2010. P. 1118-1121.
  25. Karimkashi S., Zhang G., Kishk AA.., Bocangel W., Kelley R., Meier J., Palmer R.D. Dual-Polarization Frequency Scanning Microstrip Array Antenna with Low Cross-Polarization for Weather Measurements // IEEE Trans. Antennas Propagat. Nov. 2013. V. 61. № 11. P. 5444-5452.
  26. Suchkov A.V. Diagrammoobrazujushhaja skhema monoimpulsnojj chastotno-skanirujushhejj antennojj reshetki // Vestnik koncerna PVO «Almaz-Antejj». 2016. № 1. S. 76-88.