350 rub
Journal Achievements of Modern Radioelectronics №9 for 2016 г.
Article in number:
Approach to probabilistic error model building for the space surveillance radar
Authors:
S.I. Volkov - Engineer 1 cat., JSC «RPC «NIIDAR». E-mail: svolkov@bk.ru V.B. Ovodenko- Ph.D. (Eng.), Head of Department, JSC «RPC «NIIDAR». E-mail: ovodenko@gmail.com P.D. Tumanov - Head of Laboratory, JSC «RPC «NIIDAR». E-mail: tprohor@mail.ru L.V. Borodavkin - Head of Laboratory, JSC «RPC «NIIDAR». E-mail: boleonv@gmail.com A.P. Bondarenko - Ph.D. (Eng.), Chief Research Scientist, JSC «RPC «NIIDAR». E-mail: bond_a_p@mail.ru V.A. Mukhanov - Engineer 1 cat., JSC «RPC «NIIDAR». E-mail: va_mu_an@mail.ru
Abstract:
The radar residual model includes a representation of the measurement residuals as a sum of the different nature components and functional depending of these components on certain parameters. The radar measurement is a set of transformations of target state parameters into the radar measurement parameters. The radar measurement errors are classified into three types: random, systematic and anomalous. The anomalous errors are filtered out and not involved in constructing a residuals model. In general radar calibration includes detection and further compensation in the radar measurement model. The radar residual is considered as a random value. The expectation of residual shows the systematic component and dispersion shows the random component of error. The radar residual can be represented as a sum of systematic and random components. The systematic component is not a random value. It can be represented as a function depending on the set of certain factors. The random component has a zero-expectation and the set of the factors depends on measuring coordinate. To study the behavior of the random error (dispersion of the residual) the experimental sample should be centered, i.e. the expectation should be shifted to a zero. In the presence of functional dependence residual expectation of any factor it is necessary to center an estimate of the expectation in each point of the factor values. One of the ways of obtaining this estimate is to calculate the moving average of the sample. The radar can track a number of calibration satellites. These data were collected under experimental campaign for studying radar errors. We used a special radar mode with a reduced sounding period in comparison with standard mode. This mode allows taking up to 1500 single measurements for each satellite trajectory. The mode with reduced sounding period allowed us to obtain samples of coordinate measurements which are sufficient to access sta-tistical characteristics of errors and to detect the presence of frequency systematic error. The frequency systematic error varies in time. Also it depends for each satellite tracking. The main results of our study can be summarized as follows. The approach to probabilistic error model building for the space surveil-lance radar is presented. The analysis of the experimental data showed the real centered frequency random error corresponds to the theoretical evaluation. A more accurate model of the propagation medium is needed to compensate systematic frequency error. The results of the study can be used to simulate residuals with the specified probability characteristics.
Pages: 35-42
References

 

  1. Barton D., Vard G. Spravochnik po radiolokacionnym izmerenijam. M.: Sov. radio. 1976.
  2. Agapov O.A., Bondarenko A.P., Borodavkin L.V., Ovodenko V.B., Sokolov K.S., Skoruk E.N. Podkhod k justirovke RLS na osnove vysokotochnykh dannykh kosmicheskikh apparatov // Sb. nauch. trudov. M.: NIIC CNII VVKO. 2016.
  3. Savrasov JU.S. Algoritmy i programmy v radiolokacii. M.: Radio i svjaz. 1985.
  4. Farina A., Studer F. Cifrovaja obrabotka radiolokacionnojj informacii. Soprovozhdenie celejj. M.: Radio i svjaz. 1993.
  5. Bondarenko A.P., Borodavkin L.V., Ovodenko V.B., Trekin V.V. Uchet atmosfernykh popravok vo vtorichnojj obrabotke RLS DO // Radiopromyshlennost. 2014. Vyp. 1. S. 123-135.
  6. Bondarenko A.P., Borodavkin L.V., Ovodenko V.B., Skoruk E.N., Tumanov P.D. JUstirovka RLS na osnove vysokotochnykh ehtalonnykh dannykh kosmicheskikh apparatov. Predvaritelnye rezultaty // Sb. nauch. trudov. M.: NIIC CNII VVKO. 2015.
  7. Borodavkin L.V., Bondarenko A.P. Utochnennaja zavisimost raznostnojj chastoty ot dalnosti i skorosti dlja signala s linejjnojj chastotnojj moduljaciejj // EHlektronnyjj zhurnal «Trudy MAI». 2016.
  8. Pearlman M.R., Degnan J.J., Bosworth J.M. The international laser ranging service // Adv. Space Res. 2002. № 30 (2). P. 135-143.
  9. Radicella S.M. The NeQuick model genesis, uses and evolution // Annals of Geophysics. 2009. V. 52. № 3/4. P. 1049-1059.
  10. Sovremennaja radiolokacija (analiz, raschet i proektirovanie sistem): per. s angl. / Pod red. JU.B. Kobzareva. M.: Sov. radio. 1969.
  11. Sokolov K.S., Trekin V.V., Ovodenko V.B., Patronova E.S. Metod operativnogo ucheta vlijanija sredy na traektornye izmerenija // Uspekhi sovremennojj radioehlektroniki. 2012. № 2. S. 17-21.