350 rub
Journal Achievements of Modern Radioelectronics №2 for 2016 г.
Article in number:
Algorithm for fast E pulse synthesis
Authors:
D.V. Filimonova - Student, Moscow Aviation Institute (National Research University). E-mail: daria-fili@rambler.ru T.Ya. Shevgunov - Ph. D. (Eng.), Associate Professor, Moscow Aviation Institute (National Research University). E-mail: shevgunov@gmail.com E.N. Efimov - Post-graduate Student, Moscow Aviation Institute (National Research University). E-mail: omegatype@gmail.com
Abstract:
In this paper, E pulse target discrimination method which uses the time-domain target response to a wideband incident waveform is discussed. Based upon the resonant model of the transient behavior of conducting targets obtained and formularized via the singularity-expansion method (SEM), the E pulse method allows developing the computationally efficient technique for discrimination of radar targets. The E pulse is defined as a finite duration waveform, which annihilates a preselected number of the natural resonances of a particular target. Mathematically, this means the convolution product of the target response and the E pulse matched to the target will vanish in late-time part. The E pulse can be analytically represented as a weighted sum of convenient basis functions. The most useful basis set, due to its great simplicity, is one that is composed of subsectional polynomial pulse functions. Finding the coefficients of polynomials to obtain functions that determine the waveform of E pulse over each of the sections could be ob-tained by solving large-scale system of linear equations with elements evaluated sophisticatedly. In practice, there emerges a chain of difficulties associated with this problem, for example, an ill-conditioned matrix case. The purpose of this work is to introduce an alterna-tive synthesis algorithm of polynomial based E pulses. This multistep algorithm proposes producing an E pulse consisting of delta-functions at the first step, and then, a series of step-by-step cross convolutions up to the desired polynomial degree. Not only does this solution not imply solving any equations but it also requires a great deal few operations than standard equation solving procedure. In addition, the discrimination scheme assembled for this method was investigated. The E pulse technique performance was confirmed by numerical simulation using natural resonances of two aircraft scale models: Boeing 707 (B 707) and McDonnel Douglas F 18.
Pages: 97-103
References

 

  1. Baum C.E.Thesingularityexpansionmethod // TransientElectromagneticFields. L.B. Felsen (ed.). NewYork. 1976. P. 129−179.
  2. Morgan M.A.Singularityexpansionrepresentationsoffieldsandcurrentsintransientscattering // IEEETransactionsonAntennasandPropagation.May 1984. V. 32. № 5. P. 466−473.
  3. Rothwell E.J.Radartargetdiscriminationusingtheextinction-pulsetechnique. Ph.D. dissertation. MichiganStateUniversity. 1985.
  4. Rothwell E., Chen K.M., Nyquist D.P.FrequencydomainE‑pulsesynthesisandtargetdiscrimination // IEEETransactionsonAntennasandPropagation. Apr 1987. V. 35. № 4. P. 426−434.
  5. Carrión M.C., Gallego A., Portí J., Ruiz D.P.Subsectional-polynominalE‑pulsesynthesisandapplicationtoradartargetdiscrimination // IEEETrans. AntennasPropagation. Sep 1993. V. 41. № 9. P. 1204−1211.
  6. Filimonova D.V., SHevgunov T.JA. Sintez i optimizacija posekcionnogo polinomialnogo E‑impulsa pri reshenii zadachi razlichenija obektov po sobstvennym rezonansam // ZHurnal radioehlektroniki. 2015. № 3. http://jre.cplire.ru/jre/mar15/19/abstract.html.
  7. Rothwell E., Ilavarasan P., Ross J.PerfomanceofanautomatedradartargetdiscriminationschemeusingE‑pulsesandS‑pulses // IEEETrans. AntennasPropagation. May 1993. V. 41. № 5. P. 582−588.
  8. Blanco D., Ruiz D.P., Alameda-Hernández E., Carrión M.C.AnasymptoticallyunbiasedE‑pulse-basedschemeforradartargetdiscrimination // IEEETrans. AntennasPropagation. May 2004. V. 52. № 5. P. 1348−1350.