350 rub
Journal Achievements of Modern Radioelectronics №2 for 2016 г.
Article in number:
Collation of biaxial and triaxial passive optical target seeker gyroscopic stabilization systems
Authors:
A.V. Tsaptsov - Ph. D. (Eng.), Nudelman Precision Engineering Design Bureau (Moscow). E-mail: at_kbtm@mail.ru A.V. Molokin - Nudelman Precision Engineering Design Bureau (Moscow). E-mail: mail@kbtochmash.ru A.N. Velichko - Nudelman Precision Engineering Design Bureau (Moscow). E-mail: mail@kbtochmash.ru
Abstract:
Due to passive method of target detection and built-in gyro stabilization system (which greatly increase the whole accuracy) passive optical target seeker (TS) is widely adopted in aircraft and anti-aircraft missiles. For TS based on matrix IR-detector the triaxial stabilizer (with additional roll control channel) is hold much more promise than the traditional biaxial one. Collation of bi- and triaxial stabilizers was realized with use of dynamic simulation. TS-s dynamic model includes ones: stabilization system (bi- or triaxial), servo drives based on torque electro motors, IR-detector channel, missile-s body oscillations and relative motion «missile-to-target». TS-s stabilization system model is designed using Lagrange equations which allow to make a more detail research of how the missile body oscillations effect on TS accuracy. According to dynamic simulation results missile body oscillations with only amplitude 1° and frequency 1 Hz cause critical image blurring and target-s signal decreasing in biaxial TS. Moreover, in case nonzero missile observed bearing the biaxial TS measurement error is also increasing. For example, if missile ob-served bearing is equal to 2-3° the measurement error of line of sight angular velocity rises twice and detection range may reduce to 30-40%. On another side, triaxial TS holds minimal stabilization derivations and measurement errors and successfully blocks image blurring in case different levels rolling oscillations.
Pages: 25-31
References

 

  1. SHilin A.A. Obzor passivnykh opticheskikh GSN dlja porazhenija nazemnykh takticheskikh celejj // Izvestija TulGU. Tekhnicheskie nauki. 2014. № 7. S. 202−209.
  2. SHHerbinin R.V. Golovki samonavedenija perspektivnykh zarubezhnykh upravljaemykh raket i aviabomb // Zarubezhnoe voennoe obozrenie. 2009. № 4. S. 64−68.
  3. Tolpegin O.A., Novikov V.G. Matematicheskie modeli sistem navedenija letatelnykh apparatov. Kolomna: Izd-vo KI (f) MGOU. 2011.
  4. Stepovojj A.V., Semenov A.V., Toloknov A.D., Capcov A.V. Issledovanie sistemy slezhenija za celju v uslovijakh vozdejjstvija vneshnikh faktorov // Voprosy oboronnojj tekhniki. Ser. 9. 2010. № 3(244)−4(245). S. 45−50.
  5. Lebedev A.A., CHernobrovkin L.S. Dinamika poleta bespilotnykh letatelnykh apparatov: Ucheb. posobie dlja vuzov. Izd. 2-e, pererab. i dop. M.: Mashinostroenie. 1973.
  6. Giroskopicheskie sistemy. Giroskopicheskie pribory i sistemy: Uchebnik dlja vuzov po specialnosti «Giroskopicheskie pribory i ustrojjstva» / Pod redakciejj D.S. Pelpora. M.: Vysshaja shkola. 1988.