350 rub
Journal Achievements of Modern Radioelectronics №1 for 2016 г.
Article in number:
The is estimate-is correlative-compensating searcher of signals against Gaussian noise with unknown intensity
Authors:
V.I. Vladimirov - Dr.Sc. (Eng.), Professor, MTSC Air Forces «MAA named professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh) А.А. Bubenshikov - Ph.D. (Eng.), Senior Lecturer, MTSC Air Forces «MAA named professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh). E-mail: kleo_cesar@mail.ru I.V. Vladimirov - Ph.D. (Eng.), Associate Professor, Deputy Director SIC, JSC «Concern «Sozvezdie» (Voronezh) I.I. Malyshev - Dr.Sc. (Eng.), Chief Research Scientist, JSC «Concern «Sozvezdie» (Voronezh)
Abstract:
At the decision of tasks of radio monitoring of radio-electronic (electromagnetic) environment (REO, EMO) often the case, when is detected the panoramic radio signals on the background of white Gaussian noise with unknown intensity, and sometimes with unknown correlation function. Detection of signals in Gaussian noise with constant intensity with known correlation function adequately considered in various well-known works. Also in some papers considered the algorithms that define the structure of the optimal detectors of signals in background noise with unknown intensity, which correspond to the estimation-correlation-compensation method of processing signals in background noise of unknown intensity and structure or with training. The purpose of this article is to show that the proposed method of simultaneously measuring in the detection channel panoramic radio capacity of the received signal and interference (noise) allows you to: a) to propose options for the design of quasi-optimal detectors of signals in background noise of unknown intensity and to give them a comparative description; b) to estimate the unknown noise level in the radio channel, and thereby to provide adaptive control of the threshold level corresponding to a given value of false alarm in the final device. The basis for a method of simultaneous measurement in a passband of the main channel of the detected average power signal and average power of the noise (interference) put the difference of the levels of the variance of the noise (interference) component at the output of the autocorrelation device and the correlation device. This difference is 3 dB, which allows the evaluation of the average power of noise component at the output of autocorrelation and correlation device algorithmically (subtraction) to determine the average power of the noise (interference) and, respectively, then the average signal power. This allows for given probabilities of false alarm and detection at the output of the detector by compensating the measured values of the noise dispersion at the input of the threshold device to reduce the threshold signal-to-noise ratio at the receiver input and, thereby, increase the sensitivity of the panoramic receiver detection. Studies have shown that the proposed version of the construction of the detector estimation-correlation-compensation type allows to potentially reduce the threshold signal-to-noise ratio that determines the sensitivity of the receiver to detect a signal with constant amplitude and initial phase by a factor of 2, and for signals with random amplitude and initial phase at 1,83 times, representing an increase of detection range in the HF range at 44% and 35% respectively, and in the VHF - 20% and 16% respectively.
Pages: 9-17
References

 

  1. Levin B.R. Teoreticheskie osnovy statisticheskojj radiotekhniki. Izd. 3-e, pererab. i dop. M.: Radio i svjaz. 1989.
  2. Tikhonov V.I. Optimalnyjj priem signalov. M.: Radio i svjaz. 1982.
  3. Tikhonov V.I. Statisticheskaja radiotekhnika. M.: Sov. radio. 1966.
  4. Bakut P.A., Bolshakov I.A., Gerasimov B.M., Kuriksha A.A., Repin V.G., Tartakovskijj G.P., SHirokov V.V. Voprosy statisticheskojj radiolokacii. T. 1,2. / Pod red. G.P. Tartakovskogo. M.: Sov. radio. 1964.
  5. Repin V.G., Tartakovskijj G.P.Statisticheskijj sintez pri apriornojj neopredelennosti i adaptacija informacionnykh sistem. M.: Sov. radio. 1977.
  6. Sosulin JU.G. Teorija obnaruzhenija i ocenivanija stokhasticheskikh signalov. M.: Sov. radio. 1978.
  7. Trifonov A.P., Kostylev V.I. EHnergeticheskoe obnaruzhenie uzkopolosnykh signalov na fone shuma neizvestnojj intensivnosti / Izvestija vuzov. Radiofizika. 2002. T. XLV. № 6. S. 538-547.
  8. Patent 2472167 RF. Cifrovojj izmeritel moshhnosti signala i moshhnosti pomekhi v polose propuskanija kanala radiopriemnika v realnom masshtabe vremeni. Isaev V.V., Nemchilov A.V., Lushhik JU.A., Bubenshhikov A.A., Bubenshhikov A.V., Vladimirov V.I., Sidenko S.V. Zajav. 07.10.2011; opubl. 10.01.2013; prioritet 07.10.2011.
  9. Vladimirov V.I., Bubenshhikov A.A., Bubenshhikov A.V., Sidenko S.V. Odnovremennoe izmerenie moshhnosti signala i moshhnosti shuma (pomekhi) v polose propuskanija osnovnogo kanala radiopriema / Informacionno-izmeritelnye i upravljajushhie sistemy. 2012. № 7. S. 67-73.
  10. CHerenkova E.L., CHernyshev O.V. Rasprostranenie radiovoln. Ucheb. dlja vuzov svjazi. M.: Radio i svjaz. 1984.