350 rub
Journal Achievements of Modern Radioelectronics №9 for 2015 г.
Article in number:
Current status and development prospects of atmosphere radio sensing systems in Russia
Authors:
V.E. Ivanov - Dr.Sc. (Eng.), Professor, Head of Department «Technology and Communication», Ural Federal University (Ekaterinburg). E-mail: v.e.ivanovekt@gmail.com A.V. Gusev - Senior Lecturer, Department «Technology and Communication», Ural Federal University (Ekaterinburg) K.A. Ignatkov - Ph.D. (Eng.), Leading Engineer, Department «Technology and Communication», Ural Federal University (Ekaterinburg) S.I. Kudinov - Ph.D. (Eng.), Associate Professor, Department «Technology and Communication», Ural Federal University (Ekaterinburg) I.V. Malyigin - Ph.D. (Eng.), Associate Professor, Department «Technology and Communication», Ural Federal University (Ekaterinburg) V.Ya. Noskov - Dr.Sc. (Eng.), Professor, Department «Technology and Communication», Ural Federal University (Ekaterinburg). E-mail: noskov@oko-ek.ru O.V. Plohih - Senior Lecturer, Department «Technology and Communication», Ural Federal University (Ekaterinburg) V.V. Ryisev - Post-graduate Student, Department «Technology and Communication», Ural Federal University (Ekaterinburg) O.A. Chernyih - Senior Lecturer, Department «Technology and Communication», Ural Federal University (Ekaterinburg)
Abstract:
Determination of accurate and urgent information about atmosphere status is a necessary condition of synoptic, aviation and other prediction formation which are significant in many areas of human being. One of the fundamental types of hydrometeorology mea-surements is the aerologic measurements performing in the free atmosphere. Among them, the most important and significant place is occupied the atmosphere radio sensing performing with the help of aerologic radiosonde (ARS), which are lifted in the free atmosphere by a gas-filling envelope. This review is devoted to a brief historical reference on the role and contribution of the native scientists, designers from different or-ganizations into development of engineering facilities for atmosphere radio sensing. We note that our compatriot, the prominent scientist in aerology professor P.A. Molchanov is the radiosonde inventor and he is the author of its application method. At first, an idea of the radiosonde method was offered by him in 1923. This idea was implemented at January 30th, 1930 by the successful launch of the first ARS. From results of our historical excursus, it follows that in the area of Russian State Hydrometeorology their own native traditions were developed in principles of system construction, which are intended for the atmosphere radio sensing. Its - distinguishing features are application of the radar technology for slant-distance measurement and utilization of super-regenerative transceiver (SRT) in the ra-diosonde structure. Such a solution allows creation of the radio-telemetric system on the base of the combined radio channel principle on the same carrier frequency, and the ensure achievement of optimal combination of its engineering-economical characteristics and high competitiveness among foreign prototypes. Then, the review contains engineering means description for radar sounding, which were developed in our country during two last decades. Among them, at the end of 1990-s, the development of new compact radar station «Briz» was performed by the worker team of the Radiotechnical Institute of Ural State Technical University «UPI» (now Institute of Radioelectronics and Information Technologies of Ural Federal University - IRIT UrFU). Essential decrease of mass-sizes characteristics and power consumption was distinctive features of this radar technology together with system structure completely on the base of the modern semiconductor element basis. Digital processing and control methods using microprocessor devices found wide application. Antenna system is performed in the form of the phase antenna array, in which electromechanical scanning in azimuth and elevation and the electronic control by the antenna pattern are combined. Experience obtained at development of radar technology «Briz» at the very beginning of this century was used at development of the improved aerologic radar computing complex (ARCC) «Vector-M». This complex in 2004 successfully passed testing in the Central Aerologic Observatory (Dogoprudny-town of Moscow region). After two years, the operative breadboard of this complex was delivered for experimental operation in the aerologic observatory of Omsk-town (Russia). At present, according to order of Russian Hy-drometeorology Committee, 30 «Vector-M» complexes are successfully operates in Russian State aerologic network. Further investigations on the way of improvement of the radar technology of the sensing method are directed to the search of new principles of radar constructions, which are necessary to increase essentially some engineering-economic indices. These investigations at CME department are performed in two directions. The first one is based on application of SRT phase sensitivity on influence of an interrogation coherent radar signal. The second one - on implementation of the monopulse measurement method of ARS angular coordinates. This method allows growth the determination accuracy of the angular coordinated (up to 1,5-2 times) and increase on 2-3 dB the energy potential of the radio channel compared to the equal-signal zone method. The more accurate measurement of the slant distance to ARS and the possibility of its movement instantaneous velocity determination by the Doppler method are advantages of the monopulse radar. This gives an opportunity to check the perturbation fine structure in the atmosphere - its turbulence. Main parameters and characteristics of the atmosphere radio sensing systems are determined mainly not only by perfection of the ground-based part of ARCC, but its on-board part. Therefore, the ARS modernization is permanently performed in parallel with devel-opment of radar technologies «Briz» and «Vector-M» at Communication Facilities and Technologies (CFT) department of USTU-UPI. At this, the continuity principle is undeviatingly fulfilled during development of new types of ARS with improved features. According to this principle, new ARS provide its compatibility not only with new radar types, but with the old complexes of type AVK-1 and AVK 1М, a number of which in the Russian aerologic network is rather large. During last two decades, some new ARS types and units for these were developed. Further prospects of ARS modernization relate to measurement accuracy increase of meteorological parameters and application of more effective methods of binary frequency and phase modulation of the carrier frequency of the telemetric channel. Another prospect relates to implementation in ARCC of the packet method of telemetric information transmission. An expediency of this method realization relates to known problem of the radiosonde signal reception at its swinging during the flight. Due to the radiosonde antenna pattern irregularity, the signal at the radar receiver output fades by 10-20 dB with the swinging period. Because of this reason, the radar reception of coordinate and telemetric information stops temporarily. At present, one more perspective of atmosphere radio sensing development consists in SRT replace by autodyne transceiver (ADT). It is known that SRTs have a principal disadvantage - the wide radiation spectrum (4-6 MHz), which creates problems of electromagnetic compatibility of radio electronic devices. At that, ATR constructively have no differences from the first systems, but they have essentially lesser the radiation width spectrum. Another direction of radio sensing system development is the search and implementation principally new engineering solutions. At present, there is such a direction in Russia concerned to development and realization the radio sensing systems developed on the base of the satellite radionavigation systems (SRNS) GLONASS/GPS. Similar systems were developed in the beginning of 1990-s by foreign com-panies Vaisala, Graw, MODEM etc. Accumulated experience of SRNS based upper-air system operation show its principal advantages compared to another systems in power consumption, sizes and weight. Moreover, navigational upper-air system does not require adjust-ment, stabilization and orientation of the receiving station antenna, which gives additional advantages at using on the moveable objects. At present, in UrFU and at RADIY JSC (Kasli-town, Russia) the investigation are fulfilled on creation of the mobile navigational upper-air sounding system on the base of SRNS GLONASS/GPS called «Polus». The «Polus» system consists of the ground-based tracking station (GBTS) and the ARS launched in the free flight. The ARS measures atmosphere parameters, current coordinates, a velocity vector and transmit this information to GBTS via radio channel in the range 400-406 MHz with application of narrowband FM. In 2009, the acting breadboard of the «Polus» upper-air sounding system was developed, which passed successfully the initial testing on the aerologic station «Verkhnee Dubrovo» (Ekaterinburg-town, Russia). After that, the experimental pre-production model was developed and manufactured, which was used at the Baikonur Space Center for comparative testing with a serial radar system MARL-A. During this testing, a number of single and paired launchings of ARS was performed. Testing results of the experimental pre-production model of the upper-air sounding system «Polus» show that accepted engineering solu-tions and achieved indices correspond to engineering requirements, which makes to the modern radio sensing system and can be used at production of the «Polus» system-s serial model.
Pages: 3-49
References

 

  1. Ivanov V.EH., Fridzon M.B., Essjak S.P. Radiozondirovanie atmosfery: Tekhnicheskie i metrologicheskie aspekty razrabotki i primenenija radiozondovykh izmeritelnykh sredstv / pod red. V.EH. Ivanova. Ekaterinburg: GOU VPO UGTU-UPI. 2004.
  2. Molchanov P.A. O tochnosti zondirovanija atmosfery metodom radiozondov // Meteorologija i gidrologija. 1936. № 2. S. 31‑41.
  3. Zolotinkina L.I.Nachalo radiometeorologii v Rossii // Doklady 60-jj nauchnojj sessii, posvjashhennojj Dnju radio. 17‑19 maja 2005 g. Sankt-Peterburg: ZAO «AVTEHKS». 2005. S. 468-471.
  4. Molchanov P.A. Zadachi i metody izuchenija atmosfery i Arkticheskojj oblasti // Trudy 2-jj poljarnojj konf. L.: Izd. gruppy SSSR «Aehroarktika». 1930. S. 58.
  5. Frejjman I.G. O peredache ot shara-zonda // Trudy 2-jj poljarnojj konferencii. L.: Izdatelstvo gruppy SSSR «Aehroarktika». 1930. S. 61-64.
  6. Krenkel EH.T.RAEM - moi pozyvnye. Ser. «Gody i ljudi». M.: Sovetskaja Rossija. 1973.
  7. http://www.cogita.ru/pamyat/kultura-pamyati/veniamin-iofe-lishnie-lyudi-1941
  8. http://www.cao-rhms.ru/history.html
  9. KHakhalin V.S. Sovremennye radiozondy. M.: Gosehnergoizdat. 1959.
  10. Oficialnyjj sajjt OAO UPP «Vektor»: http://www.vektor.ru
  11. Issledovanie vozmozhnosti kompleksnojj mikrominiatjurizacii aehrologicheskogo radiozonda dlja sistemy zondirovanija atmosfery RKZ ? «Meteorit-2»: Otchet o NIR / UPI im. S.M. Kirova, nauch. ruk. KH.N. Gajjnanov. № GR 70022133. Sverdlovsk. 1973.
  12. Efimov A.A. Principy raboty aehrologicheskogo informacionno-vychislitelnogo kompleksa AVK-1. M.: Gidrometeoizdat. 1989.
  13. Patent 2172965 (RF). Sverkhregenerativnyjj priemoperedatchik. (Zajavleno 06.12.1999) / IvanovV.EH.
  14. Patent 2214614 (RF). Priemoperedajushhaja sistema aehrologicheskogo radiozonda i ego konstruktiv. (Zajavleno 29.11.2001) / IvanovV.EH.
  15. Ivanov V., Kikin V., Losev Y. The new generation of upper‑air observations equipment // Papers presented at the WMO technical conference on meteorological and environmental instrument and methods of observation (TECO‑98). Casablanca. Morocco.  13-15 May 1998. R. 221-225.
  16. Ivanov V.A., Gusev A.V., Mironenko O.V., Petrov R.A.Radiosonde systems of conducting upper-air observation by // Papers presented at the WMO technical conference on meteorological and environmental instruments and methods of observation (TECO-2000) WMO Instruments and Observing Methods. Report № 74. WMO/TD‑№ 1028. Beijing. China. 23-27 October. 2000.
  17. Patent 2184991 (RF). Sistema upravlenija privodom antenny. (Zajavleno 22.11.1999) / Ivanov V.EH., Gusev A.V., Petrov R.A., Menshhikov G.P., Mironenko O.V.
  18. Patent 2161847 (RF). Antennaja sistema meteolokatora. (Zajavleno 29.03.2000) / Ivanov V.EH., SHabunin S.N., KnjazevS.T.
  19. Patent 2194893 (RF). Reduktor upravlenija antennojj sistemojj. (Zajavleno 31.08.2000) / Ivanov V.EH., MenshhikovG.P.
  20. Patent 2199764 (RF). Sposob izmerenija koordinat aehrologicheskogo radiozonda. (Zajavleno 24.09.2001) / Ivanov V.EH., Petrov R.A., AkhmeevA.A.
  21. Gusev A.V., Ivanov V.EH., Mironenko O.V., Petrov R.A. Programmno-apparatnyjj kompleks avtomaticheskogo upravlenija RLS soprovozhdenija radiozonda // Mezhdunarodnaja konferencija po problemam i perspektivam razvitija ehlektrosvjazi v Rossii i stranakh SNG (MKPREHS-1): Trudy UPI. Ekaterinburg. 1997.
  22. Borcov V.V., Gusev A.V., Mironenko O.V. Podsistema obrabotki telemetricheskikh signalov nazemnojj meteorologicheskojj RLS / Tez. dokl. tretejj nauch.-tekhn. konf. «Informacionnye tekhnologii i ehlektronika». Ekaterinburg. UGTU. 1998
  23. Budai B.T., Gusev A.V., Mironenko O.V. Povyshenie pomekhoustojjchivosti obnaruzhenija obektov v uslovijakh dejjstvija intensivnykh korrelirovannykh pomekh // M.: Sb. Radiopromyshlennost. 2000. № 1.
  24. Akhmeev A.V., Didik JU.I., Ivanov V.EH. Aehrologicheskijj radiolokator kak sredstvo izmerenijj // Izmeritelnaja tekhnika. 2003. № 6. S. 61-63.
  25. Ivanov V.EH., Kudinov S.I. Voprosy razrabotki moshhnykh impulsnykh SVCH-peredatchikov na bipoljarnykh tranzistorakh // Vestnik JUzhno-Uralskogo gosudarstvennogo universiteta № 3 (262). Ser. «Kompjuternye tekhnologii, upravlenie, radioehlektronika». Vyp. 15. CHeljabinsk: FGBOU VPO JUUrGU. 2012. S. 10-14.
  26. Ivanov V.EH., Kudinov S.I. Impulsnyjj SVCH-peredatchik aehrologicheskojj RLS // Materialy 23-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2013). Sevastopol, 9-13 sent. 2013 g. V 2 tomakh..Sevastopol: Veber. 2013. S. 1006-1007.
  27. Ivanov V.EH., Menshhikov G.P., Mironenko O.V., Petrov R.A. Osnovnye podkhody k realizacii cifrovojj aehrologicheskojj stancii. Vestnik UGTU-UPI № 9 (29). Teorija i praktika slozhnykh radiotekhnicheskikh sistem / Ser. Radiotekhnicheskaja. Ekaterinburg: GOU VPO UGTU-UPI. 2003.
  28. Gusev A.V., Ivanov V.EH., Plokhikh O.V.Osobennosti razrabotki bortovykh ustrojjstv dlja sistem radiozondirovanija atmosfery. Vestnik UGTU-UPI № 9 (29). Teorija i praktika slozhnykh radiotekhnicheskikh sistem / Ser. Radiotekhnicheskaja. Ekaterinburg: GOU VPO UGTU-UPI. 2003.
  29. Ivanov V.EH., Kudinov S.I., Gorbatjuk V.N.Nekotorye rezultaty issledovanija i razrabotki priemoperedajushhikh ustrojjstv sistem radiozondirovanija atmosfery // Vestnik UGTU-UPI № 9 (29). Teorija i praktika slozhnykh radiotekhnicheskikh sistem / Ser. Radiotekhnicheskaja. Ekaterinburg: GOU VPO UGTU-UPI. 2003.
  30. Azarov A.S., Ivanov A.A., Kochin A.V., Sizov V.I., CHistjukhin V.V. Osnovnye principy postroenija i algoritmy raboty aehrologicheskogo radiolokatora MARL-A // Sajjt CAO, dokumenty: http://cao-ntcr.mipt.ru/doc.htm
  31. Ivanov A.A., Kochin A.V. Phose-array radar at Russian upper-air network // Procceedings of WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-2002). Bratislava. WMO. IOM № 75. d. 1.2(4).
  32. Chistuhin V., Ivanov A., Azarov A., Kochin A. The new phase array aerological radar-MARL. WMO techn. conf. on meteorological and envir. Instruments and methods of observation. Beijing. China. Oct. 2000.
  33. NTCR GU «CAO». Rukovodjashhijj dokument. Vremennye metodicheskie ukazanija po proizvodstvu radiozondirovanija atmosfery sistemojj MARL-A - MRZ-3AT RD 52.11.652-2003. Sajjt CAO: http://cao-ntcr.mipt.ru/Vrem.pdf
  34. Ivanov V.EH., Kudinov S.I. Issledovanie kanala dalnosti kogerentnojj RLS s bortovym sverkhregenerativnym otvetchikom // Materialy 22-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2012). Sevastopol, 10-14 sent. 2012 g. V 2 tomakh. Sevastopol: Veber. 2012. S. 905-906.
  35. Ivanov V.EH., Kudinov S.I., Gusev A.V. Osobennosti postroenija i perspektivy modernizacii aehrologicheskikh radiolokatorov tipa «Vektor-M» otechestvennykh sistem radiozondirovanija atmosfery // Trudy II Vseros. nauch. konf. «Problemy voenno-prikladnojj geofiziki i kontrolja sostojanija prirodnojj sredy» / pod obshh. red. S.S Suvorova. SPb.: VKA im. A.F. Mozhajjskogo. 2012. T.1. S. 128-135.
  36. Grigulevich V.I., Immoreev I.JA. Radioimpulsnoe preobrazovanie chastoty. M.: Sov. radio. 1966.
  37. Kudinov S.I., Gusev A.V., Ivanov V.EH. Kogerentno-impulsnaja RLS s bortovym sverkhregenerativnym priemoperedatchikom // Materialy 23-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2013). Sevastopol. 9-13 sent. 2013 g. V 2 tomakh. Sevastopol: Veber. 2013. S. 1016-1017.
  38. Kudinov S.I., Ivanov V.EH., Gusev A.V., Malygin I.V. Kogerentno-impulsnyjj peredatchik aehrologicheskojj RLS // Materialy 24-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2014). Sevastopol. 7-13 sent. 2014 g. V 2 tomakh. Sevastopol: Veber. 2014. S. 551-552.
  39. Vasin V.A., Vlasov I.B., Egorov JU.M. i dr. Informacionnye tekhnologii v radiotekhnicheskikh sistemakh: Ucheb. posobie / Pod red. I.B.Fedorova. M.: Izd-vo MGTU im. N.EH.Baumana. 2003.
  40. Ivanov V.EH. Nekotorye rezultaty issledovanijj monoimpulsnojj RLS so sverkhregenerativnym otvetchikom // Trudy 1-jj VNTK «Radiovysotometrija-2004». g. Kamensk‑Uralskijj. Ekaterinburg: izd-vo AMB. 2004. S. 65-69.
  41. Patent 2368916 (RF). Monoimpulsnaja sistema so sverkhregenerativnym otvetchikom. (Zajavleno 03.10.2007) / IvanovV.EH.
  42. Patent 2291467 (RF). Sverkhregenerativnyjj priemoperedatchik. (Zajavleno 15.03.2004) / IvanovV.EH.
  43. Patent 2265261 (RF). Konstrukcija aehrologicheskogo radiozonda (Zajavleno 08.07.2003) / BogovV.T.
  44. Patent 2345379 (RF). SVCH-modul sverkhregenerativnogo priemoperedatchika radiozonda (Zajavleno 17.09.2007) / Ivanov V.EH.
  45. Issledovanie i razrabotka sistemy radiozondirovanija atmosfery na osnove sputnikovykh platform GPS/GLONASS, modernizacija radiozondov tipa MRZ-3 dlja aehrologicheskojj seti Rosgidrometa: Otchet po NIR o patentnykh issledovanijakh / nauch. ruk. V.EH. Ivanov. Ekaterinburg. UrFU. NICH. 2010. № GR I110112133821.
  46. Issledovanie metodov povyshenija tochnosti izmerenija meteorologicheskikh parametrov atmosfery. Otchet o NIR / nauch. ruk. V.EH. Ivanov. Ekaterinburg. UrFU. NICH. 2010. № GR I110112133821.
  47. Aehrologicheskijj radiozond MRZ-3MK. Pojasnitelnaja zapiska k ehskiznomu proektu / nauch. ruk. V.EH. Ivanov. Ekaterinburg. UrFU. NICH. 2011. № GR I110112133821.
  48. Patent na poleznuju model 105477 (RF). Ustrojjstvo dlja izmerenija meteorologicheskikh velichin i formirovanija signala telemetrii aehrologicheskogo radiozonda (Zajavleno 08.02.2011) / Rysev V.V., Ivanov V.EH.
  49. Patent na poleznuju model 82344 (RF). Skhema pitanija aehrologicheskogo radiozonda (Zajavleno 20.11.2008) / Ivanov V.EH., Rysev V.V.
  50. Ivanov V.EH., Kudinov S.I. Vlijanie fluktuacijj zatukhanija sverkhregenerativnogo priemoperedatchika na parametry priemnogo rezhima // Materialy 21-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2011). Sevastopol. 14-18 sent. 2011 g. V 2 tomakh. Sevastopol: Veber. 2011. S. 438-439.
  51. Ivanov V.EH., Kudinov S.I. Modelirovanie vlijanija udarnykh kolebanijj v tranzistornykh sverkhregenerativnykh priemoperedatchikakh // Materialy 21-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2011). Sevastopol. 14-18 sent. 2011 g. V 2 tomakh. Sevastopol: Veber. 2011. S. 253-254.
  52. Ivanov V.EH., Kudinov S.I. Issledovanie otvetnogo signala priemoperedatchika radiozonda na zaprosnyjj signal // Materialy 22-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2012). Sevastopol, 10-14 sent. 2012 g. V 2 tomakh. Sevastopol: Veber. 2012. S. 903-904.
  53. Ivanov V.EH., Kudinov S.I. Issledovanie metodov povyshenija chuvstvitelnosti tranzistornykh sverkhregenerativnykh priemoperedatchikov // Materialy 22-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2012). Sevastopol, 10-14 sent. 2012 g. V 2 tomakh. Sevastopol: Veber. 2012. S. 923-924.
  54. Kudinov S.I., Gusev A.V., Ivanov V.EH. Issledovanie metodov sovmeshhenija chastot priema i peredachi v tranzistornykh sverkhregenerativnykh priemoperedatchikakh radiozondov // Materialy 23-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2013). Sevastopol. 9-13 sent. 2013 g. V 2 tomakh. Sevastopol: Veber. 2013. S. 1026-1027.
  55. Patent 2529177 (RF). Sistema radiozondirovanija atmosfery s paketnojj peredachejj meteorologicheskojj informacii (Zajavleno 19.02.2013) / Ivanov V.EH., Gusev A.V., PlokhikhO.V.
  56. Gusev A.V., IvanovV.EH., Kudinov S.I., SHirshov N.V., Rysev V.V. Paketnyjj metod peredachi telemetricheskojj informacii v radiolokacionnykh sistemakh radiozondirovanija atmosfery // Materialy 23-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2013). Sevastopol. 9-13 sent. 2013 g. V 2 tomakh. Sevastopol: Veber. 2013. S. 1028-1029.
  57. Noskov V.JA., Ivanov V.EH., Ignatkov K.A., Kudinov S.I. Teoreticheskie obosnovanija avtodinnogo metoda formirovanija otvetnogo signala radiozonda po dalnosti // Materialy 22-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2012). Sevastopol, 10-14 sent. 2012 g. V 2 tomakh. Sevastopol: Veber. 2012. S. 897-899.
  58. Kudinov S.I., Ivanov V.EH., Noskov V.JA., Ignatkov K.A. EHksperimentalnye issledovanija avtodinnogo rezhima priemoperedajushhego ustrojjstva radiozonda MRZ-3MK // Materialy 22-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2012). Sevastopol, 10-14 sent. 2012 g. V 2 tomakh. Sevastopol: Veber. 2012.  S. 900-902.
  59. Votoropin S.D., Noskov V.JA., Smolskijj S.M. Sovremennye gibridno-integralnye avtodinnye generatory mikrovolnovogo i  millimetrovogo diapazonov i ikh primenenie. CH. 1. Konstruktorsko-tekhnologicheskie dostizhenija // Uspekhi sovremennojj radioehlektroniki. 2006. № 12. S. 3-30.
  60. Ivanov V.EH., Plokhikh O.V. Radionavigacija v sistemakh aehrologicheskogo radiozondirovanija atmosfery  // Vestnik GOU VPO UGTU-UPI. Proektirovanie i analiz radiotekhnicheskikh i informacionnykh sistem: serija radiotekhnicheskaja. Ekaterinburg: GOU VPO UGTU-UPI. 2004. № 18 (48). S. 51-56.
  61. Plokhikh O.V., Ivanov V.EH. Nekotorye rezultaty razrabotki sistemy radiozondirovanija atmosfery na osnove sputnikovykh navigacionnykh platform GPS-GLONASS // Izvestija VUZov Rossii. Radioehlektronika. SPb.: Tematicheskijj vypusk «SHirokopolosnye signaly i sistemy». 2009. № 6. S. 66-74.
  62. Issledovanie kharakteristik i konstrukcijj uzlov pervichnykh preobrazovatelejj temperatury i vlazhnosti. Otchet o NIR po teme «Issledovanie i razrabotka sistemy radiozondirovanija atmosfery na osnove sputnikovykh platform GPS/GLONASS, modernizacija radiozondov tipa MRZ-3 dlja aehrologicheskojj seti Rosgidrometa» / nauch. ruk. V.EH. Ivanov. Ekaterinburg. UrFU. NICH. 2010. № GR I110112133821.
  63. Ivanov V.EH., Plokhikh O.V., CHernykh O.A. Bazovaja stancija navigacionnojj sistemy radiozondirovanija atmosfery «Poljus» // Trudy XI Mezhdunar. nauch.-tekhn. konf. «Fizika i tekhnicheskie prilozhenija volnovykh processov» / pod obshh. red. JU.E. Mitelmana. Ekaterinburg: Izd-vo UrFU. 2012. S. 157-160.
  64. Ivanov V.EH., Plokhikh O.V. Issledovanie izmeritelnojj sistemy navigacionnogo radiozonda MRZ-N1 // Trudy XI Mezhdunar. nauch.-tekhn. konf. «Fizika i tekhnicheskie prilozhenija volnovykh processov» / Pod obshh. red. JU.E. Mitelmana. Ekaterinburg: Izd-vo UrFU. 2012. S. 154-157.
  65. Ivanov V.EH., Plokhikh O.V. Priemoperedajushhaja sistema navigacionnogo radiozonda MRZ-N1 // Trudy XI Mezhdunar. nauch.-tekhn. konf. «Fizika i tekhnicheskie prilozhenija volnovykh processov» / Pod obshh. red. JU.E. Mitelmana. Ekaterinburg: Izd-vo UrFU. 2012. S.151-154.
  66. Ivanov V.EH., Gusev A.V., Ignatkov K.A., Kudinov S.I., Noskov V.JA., Plokhikh O.V. Sovremennoe sostojanie i perspektivy razvitija sistem radiozondirovanija atmosfery // Materialy 22-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2012). Sevastopol, 10-14 sent. 2012 g. V 2 tomakh. Sevastopol: Veber. 2012. S. 3-12.
  67. Ivanov V.EH., CHernykh O.A., Plokhikh O.V., Mullozoda R.T. Razrabotka sistemy radiozondirovanija atmosfery na osnove sputnikovykh navigacionnykh platform GLONASS/GPS // Sb. trudov KHI Mezhdunar. nauch.-praktich. konf. «Inzhenernye i nauchnye prilozhenija na baze tekhnologijj National Instruments - 2012». Moskva: Izd. Rossijjskogo universiteta druzhby narodov. 2012. S.1-3.
  68. Plokhikh O.V., Ivanov V.EH. Navigacionnyjj aehrologicheskijj radiozond. // Izvestija VUZov Rossii. Radioehlektronika, SPb. Spec. vypusk: 60 let Institutu radioehlektroniki i informacionnykh tekhnologijj RTF Uralskogo federalnogo universiteta. 2012. S. 148-155.
  69. Ivanov V.EH., Gusev A.V., Plokhikh O.V., Rysev V.V. Rezultaty modelirovanija, razrabotki i ehksperimentalnykh issledovanijj apparatury navigacionnogo radiozonda MRZ-N1 // Trudy II Vseros. nauch. konf. «Problemy voenno-prikladnojj geofiziki i kontrolja sostojanija prirodnojj sredy» / Pod obshh. red. S.S Suvorova. SPb.: VKA imeni A.F. Mozhajjskogo. 2012. T. 1. S. 143-149.
  70. SHirshov N.V., Plokhikh O.V., CHernykh O.A., Ivanov V.EH., Surkov D.V. Strukturnaja skhema, taktiko-tekhnicheskie kharakteristiki i osnovnye osobennosti funkcionirovanija navigacionnojj sistemy radiozondirovanija atmosfery «Poljus» // Trudy II Vseros. nauch. konf. «Problemy voenno-prikladnojj geofiziki i kontrolja sostojanija prirodnojj sredy» / Pod obshh. red. S.S Suvorova. SPb.: VKA imeni A.F. Mozhajjskogo. 2012. T. 1. S. 136-142.
  71. Plokhikh O.V., Ivanov V.EH., CHernykh O.A., Surkov D.V., SHirshov N.V. Sistema radiozondirovanija atmosfery s radionavigacionnym izmereniem koordinat po signalam GLONASS/GPS // Materialy 23-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2013). Sevastopol. 9-13 sent. 2013 g. V 2 tomakh. Sevastopol: Veber, 2013. S. 1132-1133.
  72. Plokhikh O.V., Ivanov V.EH., Rysev V.V., SHirshov N.V. Nekotorye rezultaty ispytanijj navigacionnojj sistemy radiozondirovanija atmosfery «Poljus» // Materialy 23-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2013). Sevastopol. 9-13 sent. 2013 g. V 2 tomakh. Sevastopol: Veber. 2013. S. 1130-1131.
  73. Plokhikh O.V., Gusev A.V., Kudinov S.I., CHernykh O.A., Ivanov V.EH. Struktura sistemy aehrologicheskogo zondirovanija atmosfery kosmodroma «Vostochnyjj» // Materialy 24-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2014). V 2 tomakh. Sevastopol: Veber. 2014. S. 1093-1094.
  74. HoviusW. MonnaW.A., RotheR.AcomparisonofradiosondewindfindingmethodsOMEGA, LORAN-C, andGPS / PaperspresentedattheWMO Technical Conference on Meteorological and E nvironmental Instruments and Methods of Observation (TECO-98), WMO Instruments and Observing Methods Report № 70, WMO/TD-№877. 4-15 May 1998. Casablanca (Morocco). World Meteorological Organization, 7bis, avenue de la Paix, Case postale 2300. CH-1211 Geneva 2. Switzerland. S. 169-172.
  75. Bonnardot F. Transition from OMEGA to GPS for upper-air wind observation in Meteo-France // Papers presented at the WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-98), WMO Instruments and Observing Methods Report №70, WMO/TD-№877. 4-15 May 1998, Casablanca (Morocco). World Meteorological Organization, 7bis, avenue de la Paix, Case postale 2300. CH-1211 Geneva 2. Switzerland. S. 149-152.
  76. North G.R., Pyle J.A., Zhang F. Encyclopedia of Atmospheric Sciences: V1-6. Academic Press. 2ndEdition. 2014.
  77. Oficialnyjj sajjt kompanii Vaisala: http://www.vaisala.com/
  78. Oficialnyjj sajjt kompanii GRAW: http://www.graw.de/
  79. Oficialnyjj sajjt kompanii SIPPICAN: http://www.sippican.com/
  80. Nash J., Oakley T., Vömel H., Wei L.I.WMO intercomparison of high quality radiosonde systems. Yangjiang. China,  12 July - 3 August 2010. Instruments and observing methods.Report № 107. WMO/TD-No. 1580. World Meteorological Organization, 7bis, avenue de la Paix, Case postale 2300. CH-1211 Geneva 2. Switzerland. 2011. P. 248.
  81. Malygin I.V., Plokhikh O.V., Sychugov S.G., Kudinov S.I., Ivanov V.EH. Issledovanie priemnogo modulja signalov GLONASS/GPS navigacionnogo aehrologicheskogo radiozonda // Materialy 24-jj Mezhdunar. Krymskojj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo-2014). V 2 tomakh. Sevastopol: Veber. 2014. S. 1015-1016.
  82. Gajjnanov KH.N., Essjak S.P., Matvienko V.A. Ob analiticheskom predstavlenii otnositelnojj chastoty radiozonda // Voprosy optimizacii radioehlektronnojj apparatury // Trudy Uralskogo ordena Trudovogo Krasnogo Znameni politekhnicheskogo instituta im. S.M. Kirova. Sb. № 228. Sverdlovsk, izd. UPI. 1974. S. 23-26.
  83. Plokhikh O.V., Ivanov V.EH. Rezultaty ispytanijj sistemy aehrologicheskogo radiozondirovanija atmosfery. // Nauch. trudy mezhdunar. nauch.-praktich. konf. «SVJAZ-PROM 2010» v ramkakh 7-go Evro-Aziatskogo foruma «SVJAZ-PROMEHKSPO 2010». Ekaterinburg: OOO «Kompanija Real-Media». 2010. S. 181-184.
  84. SHirshov N.V., Kurtashkin S.A., Ivanov V.EH., Plokhikh O.V., CHernykh O.A. Rezultaty ispytanijj navigacionnojj sistemy radiozondirovanija atmosfery «Poljus» na poligone Bajjkonur // Trudy II Vseros. nauch. konf. «Problemy voenno-prikladnojj geofiziki i kontrolja sostojanija prirodnojj sredy» / Pod obshh. red. S.S. Suvorova. SPb.: VKAimeniA.F. Mozhajjskogo. 2012. T. 1. S. 269-275.