350 rub
Journal Achievements of Modern Radioelectronics №9 for 2014 г.
Article in number:
Equivalent temperature of nonlinear-optical crystal in process of laser frequency conversion
Authors:
O.A. Ryabushkin - Ph.D. (Phys.-Math.), Associate Professor, Moscow Institute of Physics and Technology. E-mail: roa228@mail.ru
A.V. Konyashkin - Ph.D. (Phys.-Math.), Moscow Institute of Physics and Technology. E-mail: akonj@mail.ru
A.I. Baranov - Post-graduate Student, Moscow Institute of Physics and Technology. E-mail: aBaranov@ntoire-polus.ru
O.I. Vershinin - Post-graduate Student, Moscow Institute of Physics and Technology. E-mail: oVershinin@ntoire-polus.ru
Abstract:
Present paper contains description of basic principles of piezoelectric resonance spectroscopy method applied for measurement of equivalent temperature of nonlinear-optical crystals. Concept of equivalent temperature of nonlinear-optical crystals interacting with laser radiation is described. in course of laser frequency conversion is introduced. Equivalent temperature of crystal heated by laser radiation is determined directly from measured frequency shift of piezoelectric resonance of crystal. Experimental setup is described and experimental results are presented regarding equivalent temperature measurement of periodically poled lithium niobate PPLN crystals in process of second harmonic generation of CW radiation of ytterbium fiber laser. Temperature hysteresis and second harmonic power bistability in respect to pump power were observed during second harmonic generation in PPLN. True phase matching temperature curves were measured for PPLN at different pump levels using concept of crystal equivalent temperature. Method of piezoelectric resonance laser calorimetry, based on equivalent temperature concept, applied for precise measurement of optical absorption coefficients of crystals is described. Experimental results concerning application of this method to quartz, lithium niobate and lithium triborate crystals are represented. Influence of longitudinal temperature gradient inside crystal on efficiency of second harmonic generation is theoretically considered. It is demonstrated that during interaction with laser radiation longitudinal temperature gradient inside crystal can be several orders higher than the transverse one. In case of second harmonic generation the maximum temperature difference in longitudinal direction can be of the same order as overall crystal temperature change. It is shown that longitudinal temperature gradient of 1 K/cm can significantly reduce laser radiation conversion efficiency.
Pages: 67-80
References

  1. Franken P.A., Hill A.E., Peters C.W. and Weinreich G. Generation of Optical Harmonics // Phys. Rev. Lett. 1961. V. 7. P. 118-119.
  2. Ahmanov S.A., Hohlov R.V. Ob odnoj vozmozhnosti usilenija svetovyh voln // ZhJeTF. 1962. T. 43. S. 351-353.
  3. Giordmaine J.A. and Miller R.C. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies // Phys. Rev. Lett. 1965. V. 14. № 24. P. 973‑976.
  4. Wegner P.J., Auerbach J.M., Biesiada T.A. et al. NIF final optics system: frequency conversion and beam conditioning // Proc. SPIE. 2004. V. 5341. P. 180-189.
  5. Ross I.№, Collier J.L., Matousek P. et al. Generation of terawatt pulses by use of optical parametric chirped pulse amplification // Appl. Opt. 2000. V. 39. № 15. P. 2422-2427.
  6. Dubietis A., Butkus R., Piskarskas A.P. Trends in chirped pulse optical parametric amplification // IEEE J. Sel. Top. Quantum Electro№ 2006. V. 12. № 2. P. 163-172.
  7. Gapontsev V.P., Tyrtyshnyy V.A., Vershinin O.I. et al. Third harmonic frequency generation by Type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal // Optics Express. 2013. V. 21. № 3. P. 3715-3720.
  8. Kumar S.C., Samanta G.K., and Ebrahim-Zadeh M. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT // Optics Express. 2009. V. 17. № 16. P. 13711-13726.
  9. Kumar S.C., Samanta G.K., Devi K., and Ebrahim-Zadeh M. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation // Optics Express. 2011. V. 19. № 12. P. 1152-1169.
  10. Dmitriev V.G., Tarasov L.V. Prikladnaja nelinejnaja optika. M.: Fizmatlit. 2004.
  11. Hildenbrand A., Wagner F.R., Akhouayri H. et al. Laser-induced damage investigation at 1064 nm in KTiOPO4 crystals and its analogy with RbTiOPO4 // Appl. Opt. 2009. V. 48. № 21. P. 4263-4269.
  12. Rjabushkin O.A., Konjashkin A.V., Mjasnikov D.V., i dr. Radiochastotnaja spektroskopija nelinejno-opticheskih kristallov, vzaimodejstvujushhih s moshhnym lazernym izlucheniem. Uspehi sovremennoj radiojelektroniki. 2010. № 5. S. 54-64.
  13. Ryabushkin O.A., Myasnikov D.V., Konyashkin A.V., Tyrtyshnyy V.A. Equivalent temperature of nonlinear-optical crystals interacting with laser radiation // J. of the European Opt. Soc. Rapid publications. 2011. V. 6. P. 11032.
  14. Rjabushkin O.A., Mjasnikov D.V. Jeksperimental'noe opredelenie i teoreticheskaja model' jekvivalentnoj temperatury nelinejno-opticheskih kristallov, vzaimodejstvujushhih s moshhnym lazernym izlucheniem // Kvantovaja jelektronika. 2012. T. 42 № 6. S. 539-544.
  15. Tyn Myint-U, Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Editio№ Birk-hauser Bosto№ New York. USA. 2007.
  16. Pinnow D.A., Rich T.C. Development of a calorimetric method for making precission optical absorption measure-ments // Appl. Opt. 1973. V. 12. № 5. P. 984-992.
  17. ISO 11551. Test method for absorptance of optical laser components. International Organization for Standartizatio№ Geneva Switzerland. 2003.
  18. Willamowsky U., Ristau D., and Welsch E. Measuring the absolute absorptance of optical laser components // Appl. Opt. 1998. V. 37. № 36. P. 8362‑8370.