350 rub
Journal Achievements of Modern Radioelectronics №6 for 2014 г.
Article in number:
Wavelet-based despeckling in SAR images without thresholding
Authors:
Y.S. Bekhtin - Dr. Sc. (Eng.), Professor, Department "Automation and Information Technologies in Management", Ryazan State Radio Engineering University. E-mail: yuri.bekhtin@yandex.ru
A.A. Bryantsev - Ph.D. (Eng.), Associate Professor, Department "Automation and Information Technologies in Management", Ryazan State Radio Engineering University. E-mail: druf@rambler.ru
D.P. Malebo - Post-graduate Student, Ryazan State Radio Engineering University. E-mail: malebinho20000@hotmail.com
Abstract:
The main idea of the suggested algorithmic supply applying to de-speckling in SAR images is based on combining Pearson-s IV type Distribution and Generalized Gaussian Distribution to obtain MAP-estimators of wavelet-coefficients within sub-bands of the fast wavelet transform. The estimator of the asymmetry coefficient for a subband histogram serves as an indicator to select the needed kind of distribution. The suggested method doesn-t use any thresholding technique that allows avoiding artifacts in the processed SAR image. The results of modeling have shown the advantage of the proposed algorithmic supply comparing with well-known de-speckling procedures under PSNR and SSIM criteria.
Pages: 45-52
References

  1. Bekhtin YU.S. Obrabotka zashumlennykh izobrazhenij na osnove vejvlet-preobrazovanij // Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2006. № 18. S. 141-144.
  2. Bekhtin YU.S., Bryantsev А. Predvaritel'naya teksturnaya segmentatsiya pri szhatii dannykh zashumlennykh izobra-zhenij na osnove vejvlet-preobrazovanij // Vestnik Rya-zanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2007. № 19. S. 45-50.
  3. Radiolokatsionnye stantsii bokovogo obzora / Pod red. А.P.Reutova. M.: Sov. radio. 1970.
  4. Tekhnologiya postroeniya radiovolnovykh sistem distantsionnogo monitoringa i sejsmoprognozirovaniya / А.P.Reutov, А.P.Okhinchenko, S.B.Pisarev M.: Naukoemkie Tekhnologii. 2001. T. 2. № 2. S. 40-48.
  5. Goodman J.W. - Some fundamental properties of speckle?. J.Opt. Soc. Am. 1976. V. 66. № 11. R. 1145-1150.
  6. Gonzalez R.C., Woods R.E. Digital Image Processing. Addison Wesley. 1992.
  7. Lee J.S. Speckle suppression and analysis for synthetic aperture radar images // Optical Engineering. 1986. № 25.
  8. Kuan D.T., Sawchuk A.A., Strand T.C., Chavel P. Adaptive noise smoothing filter for images with signal-dependent noise // IEEE Trans. on Pattern Analysis and Machine Intelligence. 1985. V. PAMI 7.
  9. Frost V.S., Stiles J.A., Shanmugan K.S., Holtzman J.C. A model for radar images and its applications to adaptive digital filtering of multiplicative noise // IEEE Trans. on Pattern Analysis and Machine Intelligence. 1982. V. PAMI 4.
  10. Foucher S., Bénié G.B., Boucher J. - M. Multiscale MAP filtering of SAR images // IEEE Trans. on Image Processing, 2001. V 18. № 1. Р. 49-60.
  11. Guo H., Odegard J.E., Lang M., Gopinath R.A., Selesnick I.W., Burrus C.S. Wavelet-based speckle reduction with application to SAR based ATD/R // IEEE International Conf. on Image Processing. 1994. V 1. P.75-79.
  12. Gagon L., Smaili F.D. Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets // Proc. SPIE Signal Data Processing Small Targets. 1996.
  13. Malla S. Vejvlety v obrabotke signalov. M.: Mir. 2005.
  14. Donoho D.L. Denoising by soft-thresholding // IEEE Trans. on Information Theory. 1995. V. 41. № 3. R. 613-627.
  15. Vorob'ev V.I., Gribunin V.G. Teoriya i praktika vejvlet-preobrazovaniya. SPb.: VUS. 1999.
  16. Adams M.D. The JPEG-2000 still image compression stan-dard. 2001.
  17. Said A., and Pearlman W.A. A new fast and efficient image codec based on set partitioning in hierarchical trees // IEEE Trans on Circ. and Syst. Video Tech. 1996. V. 6.
  18. Bekhtin Yu. Optimal subband wavelet thresholding using noisy and non-noisy data of images // Proceedings of 2nd IEEE Region 8 EURASIP Symposium on Image and Signal Processing and Analysis. Pula. Croatia. 2001. June.
  19. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. M.: Nauka. Glav. red. fiz. - mat. lit. 1984.
  20. Mittal M.L., Singh V.K., and Krishnan R. Wavelet transform based technique for speckle noise suppression and data compression for SAR images // Proc. of the Fifth International Symposium on Signal Processing and Applications. 1999. P. 781-784.
  21. Chang S.G., Yu B., and Vetterli M. Adaptive wavelet thresholding for image denoising and compression // IEEE Trans. on Image Processing. 2000. V. 9. № 9. R. 1532-1546.
  22. Argenti F., Bianchi T., Alparone L. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling // IEEE Trans. on Image Processing. 2006. V. 15. № 11. R. 3385-3399.
  23. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity // IEEE Trans. on Image Processing. 2004. V. 13. № 4. R. 600-612.
  24. The SSIM index for image quality assessment, http://www.ece.uwaterloo.ca/~z70wang/research/ssim/.