350 rub
Journal Achievements of Modern Radioelectronics №10 for 2014 г.
Article in number:
Using Weighted Radon Transform for Line Detection in a Noisy Environment
Authors:
P.V. Babayan - Ph.D. (Eng.), Associate Professor, Head of the Laboratory of the Department «Automation and Information Technology in Management», Ryazan State Radio Engineering University. E-mail: aitu@rsreu.ru
N.Y. Shubin - Ph.D. (Eng.), Associate Professor, Department «Automation and Information Technology in Management», Ryazan State Radio Engineering University. E-mail: aitu@rsreu.ru
Abstract:
One of the most popular approaches to detect lines is based on the Radon trans-form (RT). But in real-world applications RT-based approach suffers from the noise and clutter, because they decrease the sharpness of the local maximums. In this paper we suggest a new approach to computational effective line detection using the Weighted Radon Transform (WRT). The suggested WRT-based approach uses gradient direction information, so only the differences that are perpendicular to the line direction are integrated to make a local maximum corresponding to the line. The theoretical and experimental studies show the effectiveness of the WRT-based line detection. The suggested WRT-based algorithm can be effectively implemented in real-time systems using parallelization and FFT-based techniques.
Pages: 39-42
References

  1. Murav'jov V.S., Murav'jov S.I. Algoritm vydelenija i izmerenija koordinat ob-ektov, nabljudaemyh na oblachnyh fonah // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. Rjazan'. 2007. № 21. S. 20-24.
  2. Strotov V.V., Korepanov S.E. Slezhenie za ob-ektom so znachitel'no izmenjajushhimisja vo vremeni razmerami // Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta. Rjazan'. 2012. № 1 (chast' 1). S. 9-14.
  3. Alpatov B.A., Balashov O.E., Stepashkin A.I. Prognozirovanie uglovyh koordinat dvizhushhihsja ob-ektov v bortovyh optiko-mehanicheskih sistemah // Informacionno-upravljajushhie sistemy. 2011. № 5. S. 2-7.
  4. Tsitsipis P., Kontogeorgos A., Hillaris A., Moussas X., Caroubalos C., Preka-Papadema P. Fast estimation of slopes of linear and quasilinear structures in noisy background, using Fourier methods // Pattern Recognition. 40(2). 2007. S. 563-577.
  5. Hrishikesh, V.K., Skipper J.A. Power spectrum weighted edge analysis for straight edge detection in images // Proc. SPIE 6575. Visual Information Processing XVI. 657507. 2007.
  6. Gioi, R.G., Jakubowicz, J.,Morel, J.-M.,Randall, G. LSD: A Fast Line Segment Detector with a False Detection Control // IEEE Trans. on Pattern Analysis and Machine Intelligence. 2010. № 32 (4). S. 722-732.
  7. Lee D., Park Y. Discrete Hough transform using line segment representation for line detection // Opt. Eng. 2011. № 50(8). 087004.
  8. Herumurti D., Uchimura K., Koutaki G., Uemura T. Automatic urban road extraction on DSM data based on fuzzy ART, region growing, morphological operations and radon transform // Proc. SPIE 8892. 2013. 88920A.
  9. Toft P.A. The Radon Transform: Theory and Implementation. PhD Thesis // Technical University of Denmark. 1996.
  10. http://www.sci.utah.edu (2005): Scientific Computing and Imaging Institute [Jelektronnyj resurs]. Salt Lake City, USA. 2005. Rezhim dostupa: URL: sci.utah.edu/~cscheid/spr05/imageprocessing/project4/