350 rub
Journal Achievements of Modern Radioelectronics №7 for 2013 г.
Article in number:
Electronics elements on carbon nanomaterials
Authors:
A.I. Vorobjova
Abstract:
By numerical solutions of Maxwell's equations investigated the frequency dependence of characteristic impedance and the amplitude of the reflection coefficient of microstrip transmission lines on the diamond with different geometrical parameters. It is shown that in the frequency range from 3 to 15 GHz Microstrip characteristic impedance determined by the width of the conductor strip and is almost independent of microstrip other geometric parameters. To obtain characteristic impedance microstrip line of 50, 75, 100 ohms must be selected following the width strip of the conductor: 0,48 mm, 0,22 mm and 0,1 mm, respectively. In the frequency range from 3 to 15 GHz the wave reflection from a microstrip transmission line can be neglected (standing wave coefficient not exceed 1,08). Due to the high thermal conductivity of the diamond heating of at the entrance microwave power 50 W is negligibly small.
Pages: 41-67
References

  1. Osawa E. // Kagaku Kyoto. 1970. № 25. R. 854.
  2. Kroto H. W., Curl R. F., Smalley R. E., Heath J. R. // Nature. 1985. № 318. R. 162.
  3. Iijima S. // Nature. 1991. № 354. R. 56.
  4. Kratschmer W., Lamb L. D., et al. // Nature. 1990. № 347. R. 354.
  5. Falvo M. R., et al. // Nature. 1999. V. 397. P. 236.
  6. Mermin N. D. // Phys. Rev. 1968. V. 176. P. 250.
  7. Novoselov K. S., et al. // Scienc. 2004. V. 306. P. 666.
  8. Novoselov K. S., et al. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 10451.
  9. Margulis L., et al. // Nature. 1993. V. 365. P. 113.
  10. Kroto H. W. // Mod. Phys. 1997. V. 69. (3). R. 703.
  11. Smalley R. E. // Mod. Phys. 1997. V. 69. (3). R. 723.
  12. Liu J. // Science. 1998. V. 280. P. 1253.
  13. Ozawa M., Deota P., Ozawa E. // Fullerene Sci. Technol. 1999. V. 7 (3). P. 387.
  14. Smalley R. E. US Patent «Process for making fullerenes by the laser evaporation of carbon» 5300203 (1994).
  15. Shpilevskii M. E., et al. // F J. of Engineering Physics and Thermophysics. 2001. V. 74 (6). P. 1499.
  16. Aleshin A. N., Biryulin Yu. F., Mironkov N. B., et al. // Fullerene Sci. and Technology. 1998. V. 6 (3). P. 545.
  17. Hensel F., Edwards P. // Science. 1996. V. 271. P. 1693.
  18. Weltner W, R.J.Van Zee R. J. // Chem. Rev. 1989. V. 89. P. 1713.
  19. Mishra S. R., Rawat H. S., et al. // J. Phys. B. 1994. V. 27 (8). P. L157.
  20. David S. Germack, et al. // Appl. Phys. Lett. 2009. V. 94. P. 233303.
  21. Hebard A. F. Annu. // Rev. Mater. Sci. 1993. V. 23. P. 159.
  22. Gharbi N., et al. // Nano Letters. 2005. V. 5 (12). P. 2578.
  23. Sidorov L. N., O V Boltalina O. V. // Russ. Chem. Rev. 2002. V. 71 (7). P. 535.
  24. Dawson W. Cagle. U.S. Patent «Fullerene-based secondary cell electrode» 7129003 (2009).
  25. Osawa E. Perspectives of Fullerene Nanotechnology. MA: Kluwer Academic. 2002.
  26. Huang J. Y., Ding F., et al. // Phys. Rev. Lett. 2007. V. 99. P. 175503.
  27. Bunch J. S., et al. // Science. 2007. V. 315. P. 490.
  28. Peres N. M. R. // J. Phys.: Condens. Matter. 2009. V. 21. P. 323201.
  29. Wallace P. R. // Phys. Rev. 1947. V. 71. P. 622.
  30. Laughlin R. B. // Phys. Rev. Lett. 1983. V. 50. P. 1395.
  31. Chen J. H., et al. // Nature Nanotechnology. 2008. V. 3. P. 206.
  32. Jannik C. Meyer, Geim A. K., et al. // Nature. 2007. V. 446. P. 60.
  33. Novoselov K. S., et al. // Nature. 2005. V. 438. P. 197.
  34. David L., et al. // Science. 2009. V. 324. P. 924.
  35. Geim A. K., Novoselov K. S. // Nature materials. 2007. V. 6. P. 183.
  36. Katsnelson M. I. // Eur. Phys. J. B. 2006. V. 51. P. 157.
  37. Peres N. M. R., et al. // Phys. J. B. 2006. V. 73. P. 125411.
  38. Novoselov K. S., et al. // Science. 2007. V. 315. P. 1379.
  39. Eizenberg M. & Blakely J. M. // Surf. Sci. 1970. V. 82. P. 228.
  40. Berger C., et al. // Science. 2006. V. 312. P. 1191.
  41. Li X., et al. // Science. 2009. V. 324. P. 1312.
  42. Fang Liu, Yong Zhang. // Carbon. 2010. V. 48. P. 2394.
  43. Wang J. J., et. al. // Appl. Phys. Lett. 2004. V. 85. P. 1265.
  44. Li D., et al. // Nature Nanotech. 2008. V. 3. P. 101.
  45. Si Y. & Samulski E. T. // Nano Lett. 2008. V. 8. P. 1679.
  46. Ponomarenko L. A., et al. // Science. 2008. V. 320 (5874). P. 356.
  47. Wallace P. R.; Ziegler K. // Phys. Rev. Lett. 1998. V. 80. P. 3113.
  48. Yu-Ming Lin, et al. // Nano Lett. 2009. V. 9 (1). P. 422.
  49. Lin Y.-M., et al. // Science 2010. V. 327 (5966). P. 662.
  50. Chen Zh., et al. // Electronics Physica E. 2007. V. 40. P. 228.
  51. Wang Z. F., Shi Z. F., Chen Jie. // ACM J. on Emerging Technologies in Computing Systems 2009. V. 5 (1). P. 3.
  52. Wang Z. F., et al. // Appl. Phys. Lett. 2008. V. 92. P. 133119.
  53. Tapaszto L., et al. // Nature Nanotechnol. 2008. V. 3. P. 397.
  54. Campos L. C., et al. // Nano Lett. 2009. V. 9. P. 2600.
  55. Wu Z. S., et al. // Nano Res. 2010. V. 3. P. 16.
  56. Elı ´as, A. L., et al. // Nano Lett. 2010. V. 10. P. 366.
  57. Wang X., et. al. // Phys. Rev. Lett. 2008. V. 100. P. 206803.
  58. Liying Jiao, et. al. // Nature Nanotechnology. 2010. V. 5. P. 321.
  59. Konstantin N. Kudin. // ACS Nano. 2008. V. 2. (3). P. 516.
  60. Shemella P., Zhang Y., et al. // Appl. Phys. Lett. 2007. V. 91. P. 042101.
  61. Xiaolin Li, Xinran Wang, et al. // Science. 2008. V. 319. (5867). P. 1229.
  62. Bing Huang, Zuanyi Li, et al. // J. Phys. Chem. C. 2008. V. 112 (35). P. 13442.
  63. Wang X., Zhi L., Mullen K. // Nano Letters. 2008. V. 8 (1). P. 323.
  64. Nair R. R., et al. // Science. 2008. V. 320. P. 1308.
  65. Kim S. K., et al. // Nature. 2009. V. 457. P. 706.
  66. Sukang Bae., et al. // Nature Nanotechnology. 2010. V. 5. P. 574.
  67. Jung H. Y., et al. // Appl. Phys. Lett. 2007. V. 90 (15). P. 3114.
  68. Dresselhaus M. S., Dresselhaus G., Avouris P. Carbon nanotubes: synthesis, structure, properties and applications. Berlin: Springer-Verlag. 2000.
  69. Kavan L. and Hlavaty J. // Carbon. 1999. V. 37. P. 1863.
  70. Meyyappan M. Carbon nanotubes: science and applications. CRC Press. 2004.
  71. Michael J. O'Connell. Carbon nanotubes: properties and applications. CRC Press. 2006.
  72. Bai S., Li F., et al. // Chem. Phys. Lett. 2003. V. 373. P. 83.
  73. Philip G. Collins, Michael S. Arnold, Phaedon Avouris // Science. 2001. V. 292. P. 706.
  74. Fleurier R., Lauret J. -S., et al. // Phys. Stat. Sol. (b). 2009. V. 246. P. 2675.
  75. Green A. A., Duch M. C., Hersam M. C. // Nano Research. 2009. V. 2. P. 69.
  76. Ghosh S., Bachilo S. M., Weisman R. B. // Nature Nanotech. 2010. V. 5. P. 443.
  77. Pei Zhao, Erik Einarsson, et al. // J. Phys. Chem. C. 2010. V. 114 (11). P. 4831.
  78. Martel R., Schmidt T., Shea H., et al. // Appl. Phys. Lett. 1998. V. 73 (17). P. 2447.
  79. Le Louarn, et al. // Appl. Phys. Lett. A. 2007. V. 90. P. 233108.
  80. Shoushan Fan, et al. // Physica E. 2000. V. 8. P. 179.
  81. Tsuyoshi Sekitani, Hiroyoshi Nakajima, et al. // Nature Materials. 2009. V. 8. P. 494.
  82. Lu X. B., and Dai J. Y. // Applied Physics Letters. 2006. V. 88. P. 113104.
  83. Naeemi A., Sarvari R., and Meindl J. D. // IEEE Electron Dev. Lett. 2005. V. 26. P. 84.
  84. Li Jun., Meyyappan Meyya. US Patent «Carbon nanotube interconnect» 7094679 (2006).
  85. Peter R. Buseck, Semeon J., et al. // Science. 1992. V. 257 (5067). P. 215.
  86. Jan Cami, et al. // Science. 2010. V. 329 (5996). P. 1180.
  87. Gyungseon Seol, et al. // Nano Res. 2012. V. 5(3). P. 164 - 171.
  88. Castro E. V., et al. // Phys. Rev. Lett. 2007. V. 99. P. 216802.
  89. Qingsheng Zeng, et al. // Nano Res. 2012. V. 5 (1). P. 33 - 42.
  90. Justin Wu, et al. // Nano Res. 2012. V. 5(6). P. 388 - 394.
  91. Wang J. // Electroanalysis. 2005. V. 17. P. 7.
  92. Novikov Ju. A., Rakov A. V., Todua P. A. // Nano- i mikrosistemnaya texnika. 2006. V. 12. P. 11.