350 rub
Journal Achievements of Modern Radioelectronics №3 for 2013 г.
Article in number:
Experimental study of indoor propagation of ultrawideband chaotic signal
Authors:
Yu.V. Andreyev, A.S. Dmitriev, V.A. Lazarev, A.I. Ryzhov
Abstract:
Results of experimental studies of ultrawideband (UWB) chaotic radio pulse propagation in multipath environment are presented. The experiments showed practical absence of interference of UWB chaotic radio signals by indoor propagation; lower (than for narrowband signals) attenuation of UWB chaotic signals in building walls; and multipath amplification of receiver signal in multipath environment, which was earlier investigated only theoretically. These phenomena are analyzed from single viewpoint, as consequence of autocorrelation function of chaotic signals. Since the autocorrelation function of UWB chaotic signals rapidly decays, in multipath environment reflected or diffracted signals of transmitter appear to be uncorrelated at the receiver input, so they are summed «by power», which leads to the described phenomena. Conditions are derived, necessary to observe such effects. Different types of UWB signals are compared in view of the possibility of realization of the described phenomena.
Pages: 55-66
References
  1. Revision of part 15 of the Commission-s Rules Regarding Ultra-Wideband Transmission Systems, First Report and Order. ET Docket 98-153, FCC 02-48; April 22, 2002. Washington: Federal Communications Commission (FCC), 2002 // hraunfoss.fcc.gov/edocs_public/ attachmatch/FCC-02-48A1.pdf.
  2. 802.15.4a-2007. IEEE Standard for Information Technology - Telecommunications and Information Exchange Between systems - Local and metropolitan area networks - specific requirement Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs).N.Y.: IEEE, 2007 // ieeexplore.ieee.org/servlet/opac-punumber=4299494.
  3. O rezultatakh rabot po konversii radiochastotnogo spektra po voprosu ispolzovanija polosy radiochastot 2,85-10,6 GGc sverkhshirokopolosnymi besprovodnymi ustrojjstvami. Reshenie GKRCH № 09-05-02 ot 15 dekabrja 2009 g.
  4. Siwiak K., McKeown D. Ultra-Wideband Radio Technology. Wiley. 2004.
  5. Win M.Z., Scholtz R.A. Impulse radio: How it works // IEEE Commun. Lett. 1998. V. 2. № 2. P. 36-38.
  6. Fontana R.J., Aitan A., Edwrad R. et al. Recent Advances in Ultra Wideband Communications Systems // Proc. IEEE Conf. Ultra Wideband Systems and Technology. Baltimore. MD. USA. 2002.
  7. Welborn M. TG4a Proposal for Low Rate DS-UWB (DS-UWB-LR). N.Y.: IEEE, 2005 // grouper.ieee.org/groups /802/15/ pub/2005/15-05-0021-00-004a-low-rate-ds-uwb-tg4a.ppt.
  8. Dmitriev A.S., Kjarginskijj B.E., Maksimov N.A. i dr. Perspektivy sozdanija prjamokhaoticheskikh sistem svjazi v radio i SVCH-diapazonakh // Radiotekhnika. 2000. № 3. S. 9-20.
  9. Dmitriev A.S., Panas A.I., Starkov S.O. i dr. Prjamokhaoticheskie skhemy peredachi informacii v sverkhvysokochastotnom diapazone // REH. 2001. T. 46. № 2. S. 224-233.
  10. Dmitriev A.S., Kyarginsky B.Ye., Panas A.I. et al. Experiments on ultra wideband direct chaotic information transmission in microwave band // Int. J. Bifurcation and Chaos. 2003. V. 13. № 6. R. 1495-1507.
  11. Kelly J. Time Domain-s Proposal for UWB Multi-band Alternate PHY Layer for 802.15.3a. N.Y.: IEEE. 2003 // grouper.ieee.org/groups/802/15/pub/2003/Mar03 /03143r2P802-15_TG3a-TimeDomain-CFP-Presentation.ppt.
  12. Batra A., et al. Multi-band OFDM Physical Layer Proposal. IEEE 802.15.3a Working Group submission. N.Y.: IEEE, 2003 // www.ieee802.org/15/pub/ 2003/ Jul03/ 03268r2P802-15_TG3a-Multi-band-CFP-Document.pdf.
  13. Lampe J. Introduction to Chirp Spread Spectrum (CSS) Technology. N.Y.: IEEE, 2004 // grouper.ieee.org/groups/ 802/15/pub/2004/15-04-0353-00-004a-chirp-spread-spectrum- technology.ppt.
  14. Andreev JU.V., Dmitriev A.S., Kuzmin L.V., Mokhseni T.I. Sverkhshirokopolosnye signaly dlja besprovodnojj svjazi // Radiotekhnika. 2008. № 8. S. 83-90.
  15. Dmitriev A.S., Efremova E.V., Klecov A.V., Kuzmin L.V., Laktjushkin A.M., JUrkin V.JU. Sverkhshirokopolosnaja besprovodnaja svjaz i sensornye seti // Radiotekhnika i ehlektronika. 2008. T. 53. № 10. S. 1278-1289.
  16. Andreev JU.V., Dmitriev A.S., Klecov A.V.Usilenie khaoticheskikh radioimpulsov v mnogoluchevojj srede rasprostranenija // Radiotekhnika i ehlektronika. 2007. T. 52.
    № 7. S. 838-846.
  17. Andreev JU.V., Dmitriev A.S., Klecov A.V., Koroteev M.V., Laktjushkin A.M. EHffekt mnogoluchevogo usilenija v sverkhshirokopolosnojj besprovodnojj sisteme svjazi // Trudy 1-jj Mezhdunar. konf. «Sverkhshirokopolosnye signaly i sverkhkorotkie impulsy v radiolokacii, svjazi i akustike». 27-29 sentjabrja 2005. Suzdal. Rossija. S. 147-150.
  18. Proakis J. Digital Communications. 4th ed. McGraw-Hill. 2000.
  19. Rappaport T.S. Wireless Communications - Principles & Practice // IEEE Press. 1996.
  20. Pushkarev O. Proverka dalnosti svjazi ZigBee-modulejj Maxstream v uslovijakh gorodskojj kvartiry // Novosti ehlektroniki (KOMPEHL). 2006. № 5.
  21. SHuster G. Determinirovannyjj khaos. M.: Mir. 1988.
  22. Rytov S.M. Vvedenie v statisticheskuju radiofiziku. CH.1. Sluchajjnye processy. M.: Nauka. 1966.
  23. Neopublikovannye dannye, ljubezno predostavleny CHubinskim N.P.
  24. Ryzhov A.I., Lazarev V.A., Mokhseni T.I., Nikerov D.V., Andreev JU.V., Dmitriev A.S., CHubinskijj N.P. Oslablenie sverkhshirokopolosnykh khaoticheskikh signalov diapazona 3-5 GGc pri prokhozhdenii cherez steny zdanijj // ZHurnal radioehlektroniki. 2012. № 5. jre.cplire.ru/jre/may12.
  25. Dobkin D.M. RF Engineering for Wireless Networks Hardware, Antennas, and Propagation. Elsevier. 2005.
  26. Geier J. Beating Signal Loss in WLANs. 2002 // www.wi-fiplanet.com/ tutorials/article.php/ 1431101/Beating-Signal-Loss-in-WLANs.htm.
  27. 2.4 GHz Signal Attenuation Chart // www.technolab-inc.com/html/Tech/signl_atten.htm.
  28. Hein G., Teuber A. et al. GNSS Indoors. Fighring the fading. 2008 // www.insidegnss.com.
  29. SHandala M.G. i dr. KHarakteristika zashhitnykh svojjstv stroitelnykh materialov i izdelijj iz nikh pri dejjstvii mikrovoln. 1996 // grachev.distudy.ru/Uch_kurs/ sredstva/ Templ_1/templ_1_6.htm.
  30. CHukhnov K. Osobennosti proektirovanija radiokanalnykh obektovykh sistem signalizacii // Tekhnologii zashhity, 2010. № 1. S. 44-46.
  31. Fedjunin P.A., Dmitriev D.A. i dr. Mikrovolnovaja termovlagometrija. M.: Mashinostroenie-1. 2004.
  32. Leshhanskijj JU.I., Uljanychev N.V., Lebedeva G.N., Popo-va N.JA., Metelkina E.D. EHlektricheskie parametry kirpicha, cementa i drevesiny v diapazone metrovykh-santimetrovykh radiovoln // Izv. vuzov. Ser. Radiofizika. Gorkijj. 1982.
  33. Andreev JU.V., Dmitriev A.S., Klecov A.V. Mnogoluchevoe usilenie v sistemakh SSHP svjazi na khaoticheskikh signalakh // Materialy 20-jj Mezhdunar. konf. «SVCH-tekhnika i telekom­munikacionnye tekhnologii» (KryMiKo-2010), 13-17 sentjabrja 2010. Sevastopol. Krym. Ukraina. T. 1. S. 51-52.
  34. Andreev JU.V., Dmitriev A.S., Klecov A.V. Mnogoluchevoe usilenie v SSHP prjamokhaoticheskikh sistemakh svjazi //Trudy III Vseross. konf. «Radiolokacija i radiosvjaz». Moskva, Rossija. 26-30 okt. 2009. S. 494-498.
  35. Molisch A.F. IEEE 802.15.4a Channel Modeling Subcom-mittee Report Final. 2005 // http://grouper.ieee.org/groups/ 802/15/pub/04/15-04-0662-02-004a-channel-model-final-report-r1.pdf.
  36. Dmitriev A.S., Efremova E.V., Klecov A.V., Kuz-
    min L.V., Laktjushkin A.M., JUrkin V.JU
    . Sverkhshirokopolosnaja besprovodnaja svjaz i sensornye seti // Radiotekhnika i ehlektronika. 2008. T. 53. № 10. S. 1278-1289.
  37. Tekhnicheskaja dokumentacija na IS AD8317ACPZ // www.analog.com/static/imported-files/data_sheets/AD8317.pdf.
  38. IEEE Standard for Local and metropolitan area networks. Part 15.6. Wireless Body Area Networks. 2012.