350 rub
Journal Achievements of Modern Radioelectronics №2 for 2013 г.
Article in number:
Model of scattering singularscattering pluralscatterings of electromagnetic waves from objects with radio absorbing and heat-shielding coverings for radar-tracking system with the carried reception
Keywords:
lemma of Lorentz
reciprocity theorem
electromagnetic field
radio transparent covering
heat-shielding covering
bistatic radar-location
diffused field
Authors:
A.R. Bestugin, V.N. Krasyuk, A.F. Kryachko, A.A. Ovodenko
Abstract:
The main objectives solved by means of radar-tracking system, detection of objects and measurement of parameters of their movement are. The special analysis of radar-tracking information in some cases allows to carry out recognition of the radar-tracking purposes. All these tasks are reduced to measurement of some characteristics of the electromagnetic field disseminated by the radar-tracking purpose. Therefore from information point of view of radar-tracking system represents the metric system of measurement based on adequate mathematical model of a radio channel, considering specifics of formation of a radar-tracking signal.
Radar-tracking information is formed in the course of interaction of an electromagnetic field with object of a radar-location. This interaction is shown in emergence of a diffused field with the determined existential distribution of amplitude, a phase and polarization. Therefore the adequate mathematical approach to the description of electromagnetic fields in the real environments, considering geometrical structure and electrodynamic characteristics of object of dispersion is necessary.
Effective remedy of research and the numerical solution of problems of a radar-location are integrated representations in which electromagnetic fields can correspond to various non-uniform inclusions as a part of some areas of space that does expedient use of the theorem of the reciprocity based on the generalized lemma of Lorentz.
Lorentz's generalized lemma with reference to an assessment of the indignations brought in secondary radiation by radio transparent and absorbing multilayered coverings is considered. Set of the surfaces limiting from the outside ideally carrying out disseminating bodies, and in the external area characterized by dielectric and magnetic transmittivity is considered, distribution of foreign electric currents is set or that is equivalent, equivalent magnetic currents. The satisfaction of a full field to the corresponding boundary condition is required.
Integrated representation of EMP, allowing to estimate a contribution of physical properties of the environment filling external area, in formation of a resultant field is received. For this purpose the field is compared with some reference fields means of the generalized lemma of Lorentz. The assessment of influence of a spreading surface on disseminating properties of the purpose is carried out. Ideally carrying out plane limiting the semi-space containing disseminating object is for this purpose set. The standard method of receiving the integrated equation for the superficial currents raised by set foreign sources, located in considered semi-space is based on Stratton-Choo's ratios. Application of a principle of the mirror image allowed to receive the integrated equation for a current proceeding on a considered surface which can form the basis for steady and effective computing algorithms. On the basis of McDonald's model, the field disseminated by considered object in the presence of the spreading surface in the assumption is received that its surface possesses properties of ideally «black» body. The problem of finding of effective surface of dispersion of object of a radar-location is actually reduced to definition of a diffused field in a reception point. Research of influence of a radio absorbing covering on disseminating properties of objects of a simple form, on the basis of computing experiment for a case of a bistatic location is carried out. Results of numerical modeling for a body «sphere-cone» are analysed.
Pages: 15-23
References
- Франк Ф., Мизес Р. Дифференциальные и интегральные уравнения математической физики. Т. 2. М.: ГИТТЛ. 1937.
- Бахрах Л.Д., Бененсон Л.С., Зелкин Е.Г. и др. Справочник по антенной технике / под ред. Я.Н. Фельда, Е.Г. Зелкина. М.: ИПРЖР. 1997. Т. 1.
- Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: Наука. 1989.
- Красюк В.Н. ,Оводенко А.А., Бестугин А.Р.,Рыжиков М.Б.Антенны с малой радиозаметностью. СПб.: Наука. 2011.
- Стрэттон Дж.Теория электромагнетизма. М.: ГИТТЛ. 1948.
- Сухаревский И.В., Сухаревский О.И. Расчет поля, возбуждаемого излучающей апертурой в присутствии произвольной системы рассеивателей // Радиотехника и электроника. 1986. Т. 31. № 1. С. 8-13.
- Захарьев Л.Н., Леманский А.А. Рассеяние волн «черными» телами. М.: Сов. радио. 1972.
- Варганов М.Е., Зиновьев Ю.С., Астанин Л.Ю. и др. Радиолокационные характеристики летательных аппаратов / под ред. Л.Т. Тучкова. М.: Радио и связь. 1985.
- Уфимцев П.Я.Теория дифракционных краевых волн в электродинамике. М.: Бином. 2007.
- Крячко А.Ф., Самородов А.А., Самородов С.А., Шкиль В.М. Дифракция электромагнитных волн на теле вращения «сфера-конус-сфера» // Изв. вузов. Радиоэлектроника, 2001. № 9. С. 16-22.
- Крячко А.Ф., Лихачев В.М., Смирнов С.Н., Сташкевич А.И.Теория рассеяния электромагнитных волн в угловых структурах. СПб.: Наука. 2009.