350 rub
Journal Achievements of Modern Radioelectronics №8 for 2012 г.
Article in number:
Multisite radar systems based on MIMO radars
Authors:
V.S. Chernyak
Abstract:
Thanks to wide transmitting beams of MIMO radars and the absence of space scanning, such MSRS can overcome one of main difficulties of the most effective cooperative reception: necessity of «pulse chasing» in the search mode if scanning transmitting beams are narrow. At the same time, the possibility to control transmitting beamwidths permits to concentrate radiating power in target directions in the tracking mode. Full compensation of energy loss caused by orthogonality of radiating signals and even energy gain is possible as a result of combining noncoherent signal integration at each MIMO radar with joint processing in a MSRS. It is reasonable to use the decentralized processing, which is much simpler to implement than the centralized one. Because each MIMO radar can measure not only range, but angle coordinates of a target as well, the problem of interstation measurements identification is easier to solve. Joint processing cannot cancel clutter in a MSRS because of its spatial noncorrelation. However, joint processing can enhance signal/(clutter+noise) significantly since many output signals from MIMO radars combine (when cooperative signal reception is used) and because a target is observed from different directions. In the tracking mode, one of important advantages of MSRSs should be exploit: the ability of precise target localization using target range and range sum measurements relative to spatially diverse radars. As a whole, it has been shown that MSRSs based on MIMO radars have a series of important advantages. Therefore, in spite of higher complexity of MIMO radars relative to radars with phase antenna arrays, MSRSs based on MIMO radars may be considered as a prospective lead in the radar development.
Pages: 29-47
References
  1. Chernyak V. Using MIMO radars in multisite radar systems // Proc. Int. Radar Symp. IRS 2011, Leipzig, Germany. P. 691−696. 
  2. Черняк В.С. Многопозиционная радиолокация: пер. с англ. М: Радио и связь. 1993.
  3. Willis N.J.Bistatic Radar //Artech House, Inc. 1991.
  4. Черняк В.С. , Заславский Л.П., Осипов Л.В. Многопози­ционные радиолокационные станции и системы // Зару­бежная радиоэлектроника. 1987. № 1. С. 9-69.
  5. Dorey J., Garnier G., Auvray G. RIAS, synthetic impulse and antenna radar // Proc. Int. Conf on Radar. 1989. Paris, France. Р. 556-562.
  6. Luce A-S, Molina H., Muller D., Thirard V. Experimental results on RIAS digital beamforming radar // Proc. of Int. IEE Conf on Radar. 1992. Brighton, UK. Р. 74-77.
  7. Baixiao Ch., Shouhong Zh., Yajun W., Jun W. Analysis and experimental results on sparse-array synthetic impulse and aperture radar // Proc. CIE Int. Conf. on Radar. 2001. Beijing, China. P. 76-80.
  8. Duofang Ch., Baixiao Ch., Shouhong Zh., Multiple-input multiple-output radar and sparse-array synthetic impulse and aperture radar // Proc. CIE Int. Conf. on Radar. 2006. Shanghai, China.
  9. Вовшин Б.М.Сверхширокополосная видеоимпульсная система с синтезированной апертурой для параллельного обзора пространства // Радиотехника и электроника. 1999. Т. 44. № 12. С. 1479-1486.
  10. Чапурский В.В. Функция неопределенности и пространственная разрешающая способность сверхширокополосных видеоимпульсных антенных решеток // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2005. Вып. 4. С. 94-108.
  11. Чапурский В.В. Мультипликативная обработка сигналов с подавлением отражений от местных предметов в задачах сверхширокополосной MIMO-локации // Успехи
    современной радиоэлектроники. 2009. Вып. 1-2.
    С. 114-122.
  12. Rabideau D.J, Parker P.A. Ubiquitous MIMO Multifunction Digital Array Radar and the Role of Time-Energy Management in Radar. Project Report DAR-4 // Lincoln Laboratory Massachusetts Institute of Technology. 2004 (http://www.dtic.mil/cgi-bin/GetTRDoc-Location=U2&doc= Get TRDoc.pdf&AD=ADA421233).
  13. Rabideau D.J, Parker P. Ubiquitous MIMO multifunction digital array radar //Proc. 38th Asilomar Conference on Signals, Systems and Computers. Pacific Grouve, CA, USA. 2003. V. 1. P. 1057-1064.
  14. Donnet B.J., Longstaff I.D. MIMO Radar, Techniques and Opportunities // Proc. 3rd European Radar Conf. EuRAD 2006. UK. P. 112-115
  15. Bliss D.W., Forsythe K.W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution // Records 37th Asilomar Conf. on Signals, Systems and Computers. Pacific Groove, CA, USA. Nov. 2003.V. 1.P. 54-59.
  16. Robey F.C., Coutts S., Weikle D., McHarg J.C., and Cuomo K. MIMO Radar Theory and Experimental Results // Proc. 38th Asilomar Conf. on Signals, Systems and Computers. Pacific Groove, CA, USA. Nov. 2004.V. 1.P. 54-59.
  17. Li Jian, Stoica PetreMIMO Radars with Colocated Antennas // IEEE Signal Processing Magazine. Sept. 2007. P. 106-114.
  18. Fuhrmann D.R., San Antonio G.Transmit beamforming for MIMO radar systems using partial signal correlations // Proc. 38th Asilomar Conference on Signals, Systems and Computers. Pacific Grouve, CA, USA.2004.V.1.P. 295-299.
  19. Forsythe K.W., Bliss D.W. Waveform correlation and optimization issues for MIMO rada. // Proc. 39th Asilomar Conference on Signals, Systems and Computers. Pacific Grouve, CA, USA. 2005. P. 1306-1310.
  20. Li J., Stoica P., Xie Y. On probing signal design for MIMO radar // IEEE Trans. on Signal Processing. V. 55. № 8.  P. 4151-4161.
  21. Frazer G.J., Abramovich Y.I., Johnson B.A., and Robey F.C. Recent Results in MIMO Over-the-Horizon Radar // Proc. 2008 IEEE Radar Conf. Rome, Italy.P. 789-794.
  22. Abramovich Y.I., Frazer G.J. Bounds on the Volume and Height Distributions for the MIMO Radar Ambiguity Function // IEEE Signal Processing Letters. 2008.V. 15. P. 505-508.
  23. Daum, F., Huang, J. MIMO Radar: Snake Oil or Good Idea - // IEEE AES Magazine. May 2009.P. 8-12.
  24. Haimovich A.M., Blum R.S., Cimini L.J., Jr. MIMO Radars with Widely Separated Antennas // IEEE Signal Processing Magazine. Jan. 2008. P. 116-129.
  25. Черняк В.С. О новых и старых идеях в радиолокации: MIMO РЛС //Успехи современной радиоэлектроники. 2011.№ 2.С. 5-20.
  26. Теоретические основы радиолокации / под ред. Я.Д. Шир­мана. М.: Сов. радио. 1970.
  27. Моргулис И.Л. О расчете вероятности правильного обнаружения при некогерентном накоплении дружно флуктуирующих сигналов // Вестник Московского авиационного института. 2012. Т.19.№ 1.С. 138-141.
  28. Srinivasan R. Distributed radar detection theory // IEE Proc. 1986. pt. F.V. 133. № 1. P. 55-60.
  29. Левин Б.Р. Теоретические основы статистической радио­техники. Кн. 1. М.: Сов. радио. 1966.
  30. Li J., Stoica P. (Eds.) MIMO Radar Signal Processing. New York: Wiley. 2009.
  31. Bliss D.W., et al. GMTI MIMO radar // Int. Waveform Diversity & Design Conf. 2009. 8-13 Feb. Kissimmee, Florida. P. 118-122.
  32. Kantor J., Davis Sh.K. Airborne GMTI using MIMO techniques // Proc. of 2010 IEEE Radar Conf. Washington DC. 8-12 May 2010.P. 1344-1349.
  33. Abramovich Y.I., Frazer G.J., Johnson B.A. Noncausal adaptive spatial clutter mitigation in monostatic MIMO radar: fundamental limitations // IEEE J. of Selected Topics in Signal Processing. Feb. 2010. V. 4. № 1.P. 40-54.
  34. Goodman N.A., Bruyere D.Optimum and decentralized detection for multistatic airborne radar // IEEE Trans. on AES. April 2007. V. 43. № 2.P. 806-813.
  35. He Qian, Lehnmann N.H., Blum R.S., Haimovich A.M. MIMO radar moving target detection in homogeneous clutter // IEEE Trans. on AES. July 2010. V. 46. № 3. Р. 1290-1301.
  36. Chernyak V.S. Potential accuracy of object localisation with mul­tilateration systems // Int. J. of Microwave and Wireless Technologies. June 2009. V. 1.Is. 3. Cambridge University Press.