350 rub
Journal Achievements of Modern Radioelectronics №6 for 2011 г.
Article in number:
Space mapping optimization of passive microwave devices for engineers
Authors:
Y.V. Kuznetsov, G.P. Sinyavsky
Abstract:
Space mapping (SM) optimization methods are special case of optimization techniques that use surrogate models. In general, SM surrogate includes coarse model of the device, an input mapping to transform input surrogate model parameters into coarse model parameters, and an output mapping to ensure consistency. SM surrogate needs a few fine model evaluations to build, and also has good predictive properties. As a consequence, optimization time is drastically reduced. In order to avoid overfitting and facilitate parameter extraction, input and output mappings need not to be too flexible. Our experience and a review of literature covering the subject, both show that the simple, yet effective surrogate model, that is suitable for most practical cases, should employ linear input mapping and additive output mapping. We suggest finding input linear mapping using space derivative mapping method and modified linear inverse space mapping method. Linear inverse space mapping also simplifies obtaining the optimum change of fine model parameters. If equivalent circuit are used as a coarse model, fine model parameters and coarse model parameters have different physical meaning. It is more is convenient then to use indirectly found geometric parameters as coarse model parameters instead. Indirect coarse model parameters can be found using analytic functions which relate electric circuit parameters and corresponding geometric parameters of the device. These functions usually are known, because they are used to synthetize initial geometry of the device. The new approach facilitates use of equivalent circuits: initial approximate of input mapping is considered to be unity mapping, and additional upfront effort needed to evaluate link between geomitric and electric parameters is avoided.
Pages: 27-41
References
  1. Банков С.Е., Курушин А.А. Расчёт антенн и СВЧ структур с помощью HFSSAnsoft. М.: ЗАО «НПП «Родник». 2009.
  2. Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ-устройств с помощью Microwave Office / подред. В.Д. Разевига. М.: Солон-Пресс. 2003. C. 41-133.
  3. Panariello A.Yu M., Ismail M., Zheng J. 3-D EM simulators for passive devices // IEEE Microwave Magazine. December 2008. P. 50-61.
  4. Weiland T., Timm M., Munteanu I. A practical guide to 3-D simulation // IEEE Microwave Magazine. December 2008. P. 62-75.
  5. Потапов Ю. Особенности технологии проектирования и производства LTCC-модулей // Производство электроники: технологии, оборудование, материалы. 2008. №1. С. 39-44.
  6. Press W., Teukolsky S. Vetterling W. Flannery B. Numerical Recipes in C. The art of scientific computing / Second edition. Cambridge: Cambridge University Press. 1992. P. 683-688.
  7. Bandler J., Kellermann W., Madsen K. A superlinearly convergent minimax algorithm for microwave circuit design // IEEE Transactions on microwave theory and techniques. December 1985. V. 33. № 12. P. 1519-1530.
  8. Гупта К., Гардж Р., Чадха Р. Машинное проектирование СВЧ-устройств: пер. с англ. С.Д. Бродецкой. М.: Радиоисвязь. 1987. С. 223-224.
  9. Georgieva N., Glavic S., Bakr M., Bandler J. Feasible adjoint sensitivity technique for EM design optimization // IEEE Transactions on microwave theory and techniques. December 2002. V. 50. № 12. P. 2751-2758.
  10. Guarnieri G., Pelosi G., Rossi L., Selleri S. An efficient perturbative approach for finite-element analysis of microwave devices exhibiting small geometrical variations // IEEE Transactions on microwave theory and techniques. February 2009. V. 57. № 2. P. 395-405.
  11. Kirkpatrick S., Gelatt C., Vecchi M. Optimization by simulated annealing // Science. May 1983. V. 220. P. 671-680.
  12. Bilbro G., Steer M., Trew R., Chang C.-R., Skaggs S. Extraction of the parameters of equivalent circuits of microwave transistors using tree annealing // IEEE Transactions on microwave theory and techniques. November 1990. V. 38. № 11. P. 1711-1718.
  13. Бовбель Е.И., Кухарчик П.Д., Тишков Д.В. Применение генетических алгоритмов в задачах прикладной электродинамики // Электромагнитные волны и электронные системы. 2004. Т. 9. № 1. С. 33-45.
  14. Kennedy J., Eberhart R. Particle swarm optimization // Proceedings of IEEE Conference on Neural Networks IV. 1995. P. 1942-1948.
  15. Mikki S., Kishk A. Quantum particle swarm optimization for electromagnetics // IEEE Transactions on Antennas and Propagation. October 2006. V. 54. № 10. P. 2764-2775.
  16. Koziel S., Cheng Q., Bandler J. Space mapping // IEEE Microvawe Magazine. December 2008. P. 105-122.
  17. Koziel S., Bandler J., Madsen K. A space-mapping framework for engineering optimization - theory and implementation // IEEE Transactions on microwave theory and techniques. October 2006. V. 54. № 10. P. 3721-3730.
  18. Сверхширокополосные микроволновые устройства / под ред. А.П. Креницкого и В.П. Мещанова. М.: Радио и связь. 2001. С. 45-58.
  19. Simpson T., Peplinski J., Koch P., Allen J.Metamodels for computer-based engineering design: Survey and recommendations // Engineering with Computers Journal. July 2001. V. 17.№ 2. P. 129-150.
  20. Коллатц Л. Функциональный анализ и вычислительная математика: Пер. с нем. И.Г. Нидеккер / под ред. А.Д. Горбунова. М.: Мир. 1969. С. 255-263, 290-292.
  21. Bandler J., Cheng Q.S., Dakroury S., Mohamed A., Bakr M., Madsen K., Sondergaard J. Space Mapping: The State of the Art // IEEE Transactions on microwave theory and techniques. January 2004. V. 52. № 1. P. 337-361.
  22. Rayas-Sanchez J.E., Lara-Rojo F., Martinez-Guerrero E. A linear inverse space mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits // IEEE Transactions on microwave theory and techniques. March 2005. V. 53. № 3. P. 960-968.
  23. Koziel S., Bandler J. Coarse and surrogate model assessment for engineering design optimization with space mapping // IEEE MTT-S International Microwave Symposium Digest. 2007. P. 107-110.
  24. Koziel S., Bandler J. Adaptive space mapping with convergence enchancement for optimization of microwave structures and devices // IEEE MTT-S International Microwave Symposium Digest. 2008. P. 987-990.
  25. Cheng Q., Bandler J., Koziel S. Space mapping design framework exploiting tuning elements // IEEE Transactions on microwave theory and techniques. January 2010. V. 58. № 1.
    P. 136-144.
  26. Swanson D., Wenzel R. Fast analysis and optimization of combline filters using FEM // IEEE MTT-S International Microwave Symposium Digest. 2001. P. 1159-1162.
  27. Кузнецов Ю.В. Метод синтеза фильтров СВЧ на шпилечных резонаторах // Общие вопросы радиоэлектроники. Ростов-на-Дону: ФГУП «РНИИРС». 2008. Вып. 1. С. 83-88.
  28. Bandler J., Cheng Q., Nikolova N., Ismail M. Implicit space mapping optimization exploiting preassigned parameters // IEEE Transactions on microwave theory and techniques. January 2004. V. 52. № 1. P. 378-385.
  29. Bandler J., Biernacki R., Chen S.H., Hemmers R., Madsen K. Electromagnetic optimization exploiting aggressive space mapping // IEEE Transactions on microwave theory and techniques. December 1995. V. 43. № 12. P. 2874-2882.
  30. Bandler J., Biernacki R., Chen S.H., Grobelny P., Hemmers R. Space mapping tecnique for electromagnetic optimization // IEEE Transactions on microwave theory and techniques. December 1994. V. 42. № 12. P. 2536-2544.
  31. Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Т. 2: Пер. сангл. В.Я. Алтаева, В.И. Моторина. М.: Мир. 1986. С. 30-71.
  32. Bakr M., Bandler J., Georgieva N. Modeling Of Microwave Circuits Exploiting Space Derivative Mapping // IEEE MTT-S International Microwave Symposium Digest. 1999. P. 715-718.
  33. Bandler J., Biernacki R., Chen S.Fully automated space mapping optimization of 3D structures // IEEE MTT-S International Microwave Symposium Digest. 1996. P. 753-756.
  34. Bakr M., Bandler J., Biernacki R., Chen S.H., Madsen K.
    A trust region aggressive space mapping algorithm for EM optimization // IEEE Transactions on microwave theory and techniques. December 1998. V. 46. № 12. P. 2412-2425.
  35. Bakr M., Bandler J., Georgieva N.An agressive approach to parameter extraction // IEEE Transactions on microwave theory and techniques. December 1999. V. 47. № 12. P. 2428-2439.
  36. Wu K.-L., Zhao Y.-J., Wang J., Cheng M. An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping // IEEE Transactions on microwave theory and techniques. January 2004. V. 52. № 1. P. 393-402.
  37. Meng M., Wu K.-L. An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters // IEEE Transactions on microwave theory and techniques. December 2009. V. 57. № 12. P. 3188-3195.
  38. Miraftab V., Mansour R. A robust fuzzy-logic technique for computer-aided diagnosis of microwave filters // IEEE Transactions on microwave theory and techniques. January 2004. V. 52. № 1. P. 450-456.
  39. Hsu H.-T., Zhang Z., Zaki K., Atia A. Parameter extraction for symmetric coupled-resonator filters // IEEE Transactions on microwave theory and techniques. December 2002. V. 50. № 12.
    P. 2971-2978.
  40. Harscher P., Ofli E., Vahldieck R., Amari S. EM-simulator based parameter extraction and optimization technique for microwave and millimeter wave filters // IEEE MTT-S International Microwave Symposium Digest. 2002. P. 1113-1116.
  41. Маттей Д.Л., Янг Л., Джонс Е.М.Т. Фильтры СВЧ. Согласующие цепи и цепи связи. М.: Связь. 1972.
  42. Беляев Б.А., Тюрнев В.В. Метод параметрического синтеза микрополосковых фильтров // 16-я Междунар. Крымская конф. «СВЧ-техника и телекоммуникационные технологии» (КрыМиКо-2006). Материалы конф. Севастополь: Вебер. 2006. C. 517-519.
  43. Лерер А.М., Михалевский В.С. Дисперсия электромагнитных волн в некоторых типах линий передачи для СВЧ-интегральных схем // Радиотехника и электроника. 1981. Т. 26. № 3. С. 470-480.