350 rub
Journal Achievements of Modern Radioelectronics №4 for 2011 г.
Article in number:
The scanning reflective antenna with an impedance cylindrical reflector in the form of laminated structure the semiconductor - dielectric - metal with photonic control
Authors:
A. A. Prilutskiy
Abstract:
Recently the big attention to research of characteristics of reflective arrays with electronic scanning of a beam is paid. The most traditional way of maintenance of phase shift in elements reflectarrays, are phase shifting the short-circuited pieces of transmission lines commutated by pin-diodes (reflective phase shifters). Commutators on the basis of microelectromechanical and nanoelectromechanical systems (MEMS and NEMS), built in radiating structure are even more often used for this purpose. As, the phase shifters using semiconductor devices with variable capacity, operated voltage are applied, ferrite phase shifting sections etc. For a cent metric and mill metric wave band the specified approaches lead to the big resistance losses, high currents of consumption and, hence, low radiation efficiency as a whole. In a design of antennas it is required to provide power supplies and management input to the concentrated control elements of the antenna. These elements are in the field of the antenna and often create parasitic effects for which compensation it is necessary to complicate a design essentially. In this paper possibility of creation of the conformal scanning reflective antenna with photonic control is investigated. The antenna reflector is executed in the form of the multilayered medium consisting of alternating dielectric layers and semi-conductor films on the metal emulsion carrier which conductivity changes under the influence of optical bombarding radiation. Depending on a condition of semi-conductor films on a surface of a reflector of the reflective antenna the cylindrical front of an incident wave is converted to flat front of the reflected. The mathematical model of the reflective antenna in the Kirchhoff approximation is gained. Radiation patterns are resulted at scanning in wide sector of angles. The variants of an antenna design are considered. In the capacity of one of applied application of a layer structure of semiconductor film and dielectric layers on a metal emulsion carrier creation of an antenna reflector is. Such antenna can be not only low profile, but also can possess conformal properties, that are having geometrical matching to a surface, for example flying or a space vehicle.
Pages: 53-60
References
  1. Encinar, J. and Zornoza,J., Broadband design of three-layer printed reflect arrays // IEEE Trans. AP. 2003. V. 51. P. 1662-1664.
  2. Venneri, F., Costanzo, S., and Massa,G. D., Wideband aperture-coupled reflectarrays with reduced inter-element spacing // Proc. IEEE Antennas Propag. Society Int. Symp. 2008 P. 1-4.
  3. Costanzo, S., Venneri, F., and Massa,G. D., Parametric analysis of bandwidth features for aperture-coupled reflectarrays // Proc. 2nd Eur. Conf. on Antennas Propag. 2007. P. 164.
  4. Bialkowski, M., Robinson, A., and H. Song, Design, development, and testing of X-band amplifying reflectarrays // IEEE Trans. Antennas Propag. 2002. V. 50. P. 1065-1076.
  5. Perruisseau-Carrierand, J., Skrivervik,A., Monolithic MEMS-based reflect array cell digitally reconfigurable over a 360 phase range // IEEE Antennas and Wireless Propag. Lett. 2008. V. 7. P. 138-141.
  6. Legay, H., Pinte, B., Charrier, M., Ziaei, A., Girard, E., and Gillard,R., A steerable reflect array antenna with MEMS controls // Proc. IEEE Int. Symp. On Phased Array Systems and Technol. 2003. P. 494-499.
  7. Boccia, L., Venneri, F., Amendola,G., and Massa,G. D., Experimental investigation of a varactor loaded reflect array antenna // Proc. IEEE Int. Microw. Symp. Digest. 2002. P. 69-71.
  8. Venneri, F., Boccia,L., Angiulli, G., Amendola, G., and Massa,G. D., Analysis and design of passive and active microstrip reflectarrays // Int. J. RF Microw. Comput. Aided Engineering. 2003. V. 13. P. 370-377.
  9. Boccia, L., Amendola, G., DiMassa,G.Performance Improvement for a Varactor-Loaded Reflect array Element // IEEE Trans. AP. 2010. V. 58. №2. P. 586-589.
  10. Waterhouse, R. B., Shuley,N. V., Scan Performance of Infinite Arrays of Microstrip Patch Elements Loaded with Varactor Diodes // IEEE Trans. AP. 1993.V. 41. №9. P. 1273-1280.
  11. Pochiraju, T., Fusco,V., Amplitude and Phase Controlled Refectarray Element Based on an Impedance Transformation Unit // IEEE Trans. AP, 2009. V. 57. № 12. P. 3821-3826.
  12. Sievenpiper, D. F., Schaffner, J. H., JaeSong, H., Loo, R. Y., Tangonan,G., Two-Dimensional Beam Steering Using an Electrically Tunable Impedance Surface // IEEE Trans. AP. 2003. V. 51. №10. P. 2713-2722.
  13. Rajagopalan, H., Rahmat-Samii, Y., Imbriale,W. A., RF MEMS Actuated Reconfigurable Refectarray Patch-Slot Element // IEEE Trans. AP. 2008. V. 56. № 12. P. 3689-3699.
  14. Hum, S. V., Okoniewski, M., Davies, R. J., Modeling and Design of Electronically Tunable Reflect arrays // IEEE Trans. AP. 2007. V. 55. № 8. P. 2200-2210.
  15. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. М.: Наука. 1977.
  16. ПанковЖ. Оптические процессы в полупроводниках: Пер. с англ. / под ред. Ж. И. Алферова. М.: Мир. 1973.
  17. Прилуцкий А. А.Взаимодействие СВЧ-излучения с многослойными металл-диэлектрик-полупроводник (МДП) структурами // Успехи современной радиоэлектроники. 2009. № 9. С. 74-80.
  18. Прилуцкий А. А.Наклонное падение плоской волны Е-поляризации на отражательную периодическую решетку из волноводов с вставками в виде структуры - полупроводниковая пленка - диэлектрик - металл // Сб. трудов ХVI МНТК «Радиолокация навигация связь» (RLNC 2010), г. Воронеж. 2010.
  19. Кюн Р. Микроволновые антенны. Л.: Судостроение. 1967. С. 132-137.
  20. Фрадин А. З.Антенно-фидерные устройства. М.: Связь. 1977. С. 31.
  21. VanBlaricum, M. L., Photonic Antenna Reconfiguration: A Status Survey // Proceedings of the SPIE, Photonics and Radio Frequency II, 21-22 July 1998. San Diego. CA. P. 180-189.
  22. Nagra, A. S., Jerphagnon, Ol., York, R. A., Chavarkar, P., VanBlaricum, M. L., Indirect Optical Control of Microwave Circuits Using Monolithic Optically Variable Capacitors // IEEE Trans. on MTT. 1999. V. 47. №7. P. 1365-1372.