350 rub
Journal Achievements of Modern Radioelectronics №2 for 2011 г.
Article in number:
Analysis of Adaptive Discrete Cosine Transform Application in Some Image Processing Tasks
Authors:
A. N. Ganin, O. N. Gushchina, V. V. Khryashchev
Abstract:
Block discrete cosine transform (B-DCT), computed on a square or rectangular support, has been widely used as a key element in many compression algorithms and image processing applications. In 1995 an adaptive discrete cosine transform (A-DCT) was proposed by Sikora. The A-DCT is computed by cascaded application of one-dimensional varying-length DCT transforms first on the columns and then on the rows that constitute the considered image region. The shape of the transform-s support is defined with the use of anisotropic local polynomial approximation (ALPA). The image processing algorithm is based on the sequential use of A-DCT, hard-thresholding and inverse A-DCT. Hard-thresholding is performed after noise variance approximation. The algorithm was implemented in MatLab. Results of image processing were estimated in reference to three objective image quality metrics: peak signal-to-noise ratio, structural similarity index and modified peak signal-to-noise ratio. The algorithm was applied for noise removal of Additive White Gaussian Noise and post-processing of JPEG-compressed images, and comparison with other filters (Wiener filter, bilateral filter) and deblocking algorithm (Algorithm for Blocking Removal) was demonstrated. In this paper the analysis of noise variance approximation accuracy on algorithm performance was made. The experimental results demonstrated that algorithm of image processing with the use of A-DCT outperforms other reference methods in terms of all three objective metrics. Visual examples confirmed that algorithm can be effectively used for image filtering and removal of blocking artifacts on JPEG-compressed images.
Pages: 72-80
References
  1. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера. 2005.
  2. Цифровая обработка сигналов и изображений в радиофизических приложениях / под ред. В.Ф. Кравченко. М.: Физматлит. 2007.
  3. Приоров А.Л., Апальков А.В., Хрящев В.В. Цифровая обработка изображений. Ярославль: Яросл. гос. университет. 2007.
  4. Ричардсон Я. Видеокодирование. H.264 и MPEG-4 - стандарты нового поколения. М.: Техносфера. 2005.
  5. Wang Z., Bovik A. Modern image quality assessment. Synthesis lectures on image, video & multimedia processing. Morgan & Claypool. 2006.
  6. Foi A., Katkovnik V., Egiazarian K. Pointwise Shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images // IEEE Trans. Image Process. 2007. V. 16. № 5. P. 1395-1411.
  7. Gilge M. Region oriented transform coding (ROTC) of images // Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP-90. 1990. V. 4. P. 2245-2248.
  8. Ostermann J., Jang E.S., Shin J., Chen T. Coding of arbitrarily shaped video objects in MPEG-4 // Proc. Int. Conf. Image Process. 1997. P. 496-499.
  9. Sikora T. Low complexity shape-adaptive DCT for coding of arbitrarily shaped image segments // Signal Process: Image Comm. 1995. V. 7. P. 381-395.
  10. Sikora T., Bauer S., Makai B. Efficiency of shape-adaptive 2-D transforms for coding of arbitrarily shaped image segments // IEEE Trans. Circuits Syst. Video Technol. 1995. V. 5 № 3. P. 254-258.
  11. Sikora T., Makai B. Shape-adaptive DCT for generic coding of video // IEEE Trans. Circuits Syst. Video Technol. 1995. V. 5. № 1. P. 59-62.
  12. Stasinski R., Konrad J. Reduced-complexity shape-adaptive DCT for region-based image coding // Proc. IEEE Int. Conf. Image Process. 1998. P. 114-118.
  13. Krzysztof M. Shape-Adaptive DCT algorithm - hardware optimized redesign // Computer Analysis of Images and Patterns. 2001. V. 2124/2001. P. 125-133.
  14. Kinane A., Muresan V., Connor N. Optimal adder-based hardware architecture for the DCT/SA-DCT // Proc. SPIE Visual Comm. Image Process. Conf. 2005.
  15. Kinane A., Casey A., Muresan V., Connor N. FPGA-based conformance testing and system prototyping of an MPEG-4 SA-DCT hardware accelerator // IEEE 2005 Int. Conf. on Field-Progr. Tech. 2005.
  16. Foi A., Paliy D., Katkovnik V., Egiazarian K. Anisotropic nonparametric image restoration demobox (MATLAB software), Local Approximations in Signal and Image Processing (LASIP) Project, http://www.cs.tut.fi/~lasip/. 2005.
  17. Goldenshluger A., Nemirovski A. On spatial adaptive estimation of nonparametric regression // Math. Meth. Stat. 1997. V. 6. P. 135-170.
  18. Katkovnik V., Foi A., Egiazarian K., Astola J. Directional
    varying scale approximations for anisotropic signal processing // Proc. XII Eur. Signal Process. Conf. EUSIPCO. 2004. P. 101-104.
  19. Зараменский Д.А., Приоров А.Л., Хрящев В.В. Неэталонная оценка качества изображений, сжатых на основе вейвлет-преобразования // Успехи современной радиоэлектроники. 2009. №7. C. 28-34.
  20. Апальков И.В., Хрящев В.В. Исследовательская среда PicLab: текущие возможности и перспективы развития // Докл. 10-й Междунар. конф. «Цифровая обработка сигналов и ее применение». М. 2008. Т. 2. С. 467-470.
  21. Wang Z., Bovik A., Sheikh H., Simoncelli E. Image quality assessment: from error visibility to structural similarity // IEEE Trans. on Image Proc. 2004. V.13. P.600-612.
  22. Ponomarenko N., Silvestri F., Egiazarian K., Carli M., Lukin V. On between-coefficient contrast masking of DCT basis functions // Proc. of 3rd Int. Work. on Video Proc. and Quality Metr. for Cons. Electr. 2007.
  23. Vansteenkiste E., Van der Weken D., Philips W., Kerre E. Perceived Image Quality Measurement of State-of-the-Art Noise Reduction Schemes // Adv. Conc. for Intell. Vis. Syst. 2006. V. 4179/2006. P. 114-126.
  24. Donoho D.L., Johnstone I.M. Ideal spatial adaptation via wavelet shrinkage // Biometrika. 1994. № 81. P. 425-455.
  25. Szeliski R. Computer Vision: Algorithms and Applications. Springer. 2010.
  26. Tomasi C., Manduchi R. Bilateral filtering for gray and color images // Sixth Int. Conf. on Comp. Vis. 1998. P. 839-846.
  27. Elad M. On the origin of the bilateral filter and ways to improve it // IEEE Trans. on Image Proc. 2002. V. 11. № 10. P. 1141-1151.
  28. Бекренев В.А., Соловьев В.Е., Хрящев В.В. Удаление артефактов блочности в сжатых изображениях // Докл. 18-й Междунар. конф. «Информационные средства и технологии». М. 2010. Т. 2.С. 128-135.