350 rub
Journal Achievements of Modern Radioelectronics №2 for 2011 г.
Article in number:
About New and Old Ideas in Radar: MIMO Radars
Authors:
V. S. Chernyak
Abstract:
One of important tendencies in radar development is the growth of the number of channels for the increase of volume and quality of radar information. During the last years, a new direction of multichannel radar development is discussed iontensively in English-language literature: the so-called "MIMO radar" (MIMO - Multiple Input-multiple Output). The method and the term "MIMO" were borrowed from communications where the MIMO method turned out to be very effective because it permits increasing significantly the throughput of communication channels. In foreign published works MIMO radars are diveded into two classes: 1) with colocated antennas (and coded signals) and 2) with widely separated antennas, the so-called "Statistical MIMO radars". MIMO radars with colocated antennas and coded signals represent a new and prospective direction of the radar development. The most important feature of those radars is the sharp increase of the number of degrees of freedom. This determines many important advantages: better angle resolution and lower sidelobes of antenna patterns, parameter identifiability of greater number of unresolved targets, better adaptation capability including the possibility of adaptive beamforming of transmitter antenna arrays. Besides, such radars can provide effective target search in a wide sector without space scanning. The concept of MIMO radar with spatially diverse, widely separated antennas ("Statistical MIMO radar") contains nothing new. Such radars are a particular case of multisite (multistatic) radar systems. Most "new" results concerning "Statistical MIMO radars" were obtained under more general conditions and published many years ago. Having borrowed the MIMO method from communications, the authors of the "Statistical MIMO radar" applied this method to radar without studying existing achievements in radar theory and practice and without taking into account essential differences between radar and communications. Such an approach has led to serious errors, which are discussed in the paper.
Pages: 5-20
References
  1. Chernyak V. On the Concept of MIMO Radar // Proc. of Int. Radar Conf. Radar 2010. Washington. CD. USA. Р. 327-332.
  2. Alamouti S.M. A simple transmit diversity technique for wireless communications. - J. Sel. Areas Commun. 1998. V. 16. № 8. Р. 1451-1458.
  3. Foshini G.J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas // Bell Labs. Tech. J. 1996. V. 1. № 2. Р. 41-59.
  4. Tarokh V., Seshadri N., and Calderbank A. Space-time codes for high data rate wireless communication: performance criterion and code construction // IEEE Trans. Inf. Theory. 1998. V. 44. № 2. Р. 744-765.
  5. Gesbert D., Shafi M., Shiu D., Smith P. and Naguib A. From Theory to Practice: An Overview of MIMO Space-Time Wireless Systems // IEEE J. on Selected Areas in Communications. 2003. V. 21. № 3. Р. 281-302.
  6. Paulraj A.J., D.A. Gore, R.U. Nabar, and H. Bölcskei. An Overview of MIMO Communications - A Key to Gigabit Wireless // Proc. of the IEEE. 2004. V. 92. № 2. Р. 198-218.  
  7. Dorey J., Blanchard Y., Christophe F. Le projet RIAS, une approche nouvelle du radar de surveillance aérienne // Colloque International dur le radar. 1984. Versailles. France.
  8. Dorey J., Garnier G., Auvray G. RIAS, synthetic impulse and antenna radar // Proc. Int. Conf on Radar. 1989. Paris. France. Р. 556-562.
  9. Luce A-S, et al. Experimental results on RIAS digital beamforming radar // Proc. of Int. IEE Conf on Radar. 1992. Brighton. UK. Р. 74-77.
  10. Baixiao Ch., Shouhong Zh., Yajun W., Jun W. Analysis and experimental results on sparse-Аrray synthetic impulse and aperture radar // Proc. CIE Int. Conf. on Radar. 2001. Beijing, China. Р. 76-80.
  11. Duofang Ch., Baixiao Ch., Shouhong Zh., Multiple-input multiple-output radar and sparse-array synthetic impulse and aperture radar // Proc. CIE Int. Conf. onRadar. 2006. Shanghai. China.
  12. Вовшин Б.М. Сверхширокополосная видеоимпульсная система с синтезированной апертурой для параллельного обзора пространства // Радиотехника и электроника. 1999. Т. 44. № 12. С. 1479-1486.
  13. Чапурский В.В. Функция неопределенности и пространственная разрешающая способность сверхширокополосных видеоимпульсных антенных решеток // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. Вып. 4. 2005. С. 94-108.
  14. Чапурский В.В. Мультипликативная обработка сигналов с подавлением отражений от местных предметов в задачах сверхширокополосной MIMO-локации // Успехи современной радиоэлектроники. 2009. Вып. 1-2. С. 114-122.
  15. Rabideau D.J, Parker P.A. Ubiquitous MIMO Multifunction Digital Array Radar... and the Role of Time-Energy Management in Radar. Project Report DAR-4. Lincoln Laboratory Massachusetts Institute of Technology. 2004.
  16. Rabideau D.J, Parker P. Ubiquitous MIMO multifunction digital array radar // Proc. 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grouve. CA. USA. 2003. V. 1. Р. 1057-1064.
  17. Теоретические основы радиолокации / под ред. Я.Д. Ширмана. М.: Сов. радио. 1970.
  18. Donnet B.J., Longstaff I.D. MIMO Radar, Techniques and Opportunities // Proc. 3rd European Radar Conf. EuRAD 2006. UK. Р. 112-115
  19. Bliss D.W., Forsythe K.W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution // Records 37th Asilomar Conf. on Signals, Systems and Computers. Pacific Groove. CA. USA. Nov. 2003. V. 1. Р. 54-59.  
  20. Robey F.C., Coutts S., Weikle D., McHarg J.C., and Cuomo K. MIMO Radar Theory and Experimental Results // Proc. 38thAsilomar Conf. on Signals, Systems and Computers, Pacific Groove. CA. USA. Nov. 2004. V. 1. Р. 54-59.
  21. Li Jian, Stoica Petre. MIMO Radars with Colocated Antennas // IEEE Signal Processing Magazine. 2007. Sept. Р. 106-114.
  22. Fuhrmann D.R., San Antonio G. Transmit beamforming for MIMO radar systems using partial signal correlations. - Proc. 38th Asilomar Conference on Signals, Systems and Computers. Pacific Grouve. CA, USA. 2004. V. 1. Р. 295-299.
  23. Forsythe K.W., Bliss D.W. Waveform correlation and optimization issues for MIMO radar // Proc. 39th Asilomar Conference on Signals, Systems and Computers. Pacific Grouve. CA. USA. 2005. Р. 1306-1310.
  24. Li J., Stoica P., Xie Y. On probing signal design for MIMO radar // IEEE Trans. on Signal Processing. V. 55. № 8. Р. 4151-4161.
  25. Frazer G.J., Abramovich Y.I., Johnson B.A., and Robey F.C. Recent Results in MIMO Over-the-Horizon Radar // Proc. 2008 IEEE Radar Conf. Rome. Italy. Р. 789-794.
  26. Abramovich Y.I., Frazer G. J. Bounds on the Volume and Height Distributions for the MIMO Radar Ambiguity Function // IEEE Signal Processing Letters. V. 15. 2008. Р. 505-508.
  27. Fishler E., Haimovich A., Blum R., Cimini L., Chizhik D., and Valenzuela R. MIMO radar: an idea whose time has come // Proc. of the IEEE Radar Conf. April 2004. Philadelphia. PA. USA. Р. 71-78.
  28. Fishler E., Haimovich A., Blum R., Cimini L., Chizhik D., and Valenzuela R.Performance of MIMO radar systems: advantages of angular diversity // Proc. 38th Asilomar Conf. Signals. Systems and Computers.V. 1. Nov. 2004. Р. 305-309.
  29. Fishler E., Haimovich A., Blum R., Cimini L., Chizhik D., and Valenzuela R.Spatial diversity in Radars - Models and Detection Performance // IEEE Trans. on Signal Processing, V. 54, March 2006. № 3. Р. 823-838.
  30. Haimovich A.M., Blum R.S., Cimini L.J., Jr. MIMO Radars with Widely Separated Antennas // IEEE Signal Processing Magazine. Jan. 2008. Р. 116-129.
  31. Lehmann N.H., Haimovich A.M., Blum R. S., Cimini L. High Resolution Capabilities of MIMO Radar // Proc. 40thAsilomar Conf. Signals, Systems and Computers.V. 1. Nov. 2006. Р. 25-30.
  32. Lehmann N.H., Fishler E., Haimovich A., Blum R., Cimini L., Chizhik D., and Valenzuela R.Evaluation of Transmit Diversity in MIMO-Radar Direction Finding // IEEE Trans. Signal Processing.V. 55. № 2. 2007. Р. 2215-2225.
  33. ЧернякВ.С. Многопозиционнаярадиолокация. М.: Радиоисвязь. 1993.
  34. Chernyak V.S. Fundamentals of Multisite Radar Systems. Gordon and Breach Science Publishers. 1998.
  35. Иидзука К., Огура Х., Янь Дж.Л., Ван-Кхай Н. и ВидмаркДж.Р. Радиолокатор на базе голографической матрицы // ТИИЭР. 1976. Т. 64. № 10. С. 45-58 (Iizuka K., Ogura H., Yen J.L., Van-Khai Nguyen, and Weedmark J.R. A hologram matrix radar // Proc. of the IEEE 1976. V. 64. № 10. Р. 1493-1504.).
  36. Кремер И.Я., Нахмансон Г.С. Пространственно-временная обработка радиосигналов в измерительных радиосистемах в общем случае // Изв. вузов СССР. Радиоэлектроника. 1978. Т. 31. № 11. С. 3-15.
  37. Кремер И.Я. Пространственно-временная обработка сигналов. М.: Радио и связь. 1984.
  38. Steinberg B.D. Design approach for a high-resolution microwave imaging radio camera. J. FranklinInstitute. 1973. V. 296. № 6. Р. 415-432.
  39. Черняк В.С. Пространственно-частотная фильтрация сигналов на фоне стохастических помех в многоканальных приемных системах // Радиотехника и электроника. 1973. Т. XVIII. № 5. С. 959-969.