350 rub
Journal Achievements of Modern Radioelectronics №11 for 2011 г.
Article in number:
Digital Temperature-Compensation in Quartz Oscillators
Authors:
I. V. Khomenkо, A. V. Kosykh, V.P. Meyer
Abstract:
The article deals with increase of temperature stability of quarts oscillator frequency using methods of temperature compensation. The principal causes restraining growth of stability of oscillator frequency faced by manufacturers in application of analog temperature compensation are specified. Results of research on application of digital temperature compensation of frequency departure in quartz oscillators are given. The important advantage of a digital way is the opportunity of automation of labour-intensive processes on temperature compensation adjustment of generators frequency. Synthesis of compensating function is realized by tabular way with approximation. Synthesis of compensating function is realized by tabular way with approximation. The formed codes values of ADC and DAC are received during the automated measurements. The design and parameters of samples of small-sized oscillators with a microcontroller for compensation of frequency temperature deviations are described. Frequency departures in a range of temperatures -40 ºС ? +70 ºС is no more than ± 0,5 ppm. Power consumption is less than 50 мВт. Spectral density of phase noise of output signal is Sφ(100 Hz) ≤ 130 dBm/ Hz, Sφ(1 kHz) ≤ −145 dBm/Hz. In the paper the information on design of the prototype of automated adjustment system of temperature compensation with software is given. The authors have proved the possibility of making low-noise desk-size oscillators with stabilized frequency and digital temperature compensation. Because of high-quality characteristics they may have high competitiveness in the world market.
Pages: 67-70
References
  1. Мурасов К.В., Косых А.В., Хоменко И.В. Применение генераторов термокомпенсирующей функции при разработке стабильных источников опорных колебаний на основе квар-
    цевых резонаторов // Высокие технологии и фундаментальные исследования. Т. 4. Сб. трудов 10-й Международной научно-практич. конф. «Исследование, разработка и применение высоких технологий в промышленности». 09-11.12.2010. Санкт-Петербург. Россия / под ред. А.П. Кудинова. СПб.: Изд-во Политехн. ун-та. 2010.
  2. Ballato A., Tilton R. Ovenless Activity Dip Tester // Proc. 31-th AFCS. 1977. Р. 102-107.
  3. Хоменко И.В., Косых А.В., Лепетаев А.Н. Исследование нестабильности динамического сопротивления В-моды двухмодового кварцевого резонатора ТД-среза в ин-тервале температур. // Омский научный вестник. 2005. № 3(32). С. 157-161.
  4. А. с. СССР  1084938 «Термокомпенсированный кварцевый генератор» (Заявлено 05.06.1981 г.). Авторы: В.П. Багаев, А.В. Косых, А.Н. Лепетаев.
  5. Патент на полезную модель 30046 «Высокостабильный кварцевый генератор с микропроцессорной термокомпенсацией» (Заявка: 2002126174/20 от 02.10.2002 г.) / А.Н. Иркутский, Г.Б. Альтшуллер.