350 rub
Journal Achievements of Modern Radioelectronics №9 for 2010 г.
Article in number:
Reconstruction of Microvawe Holograms Recorded by the RASCAN Subsurface Radar
Authors:
V.V. Razevig, A.S. Bugaev, S.I. Ivashov, I.A. Vasiliev, A.V. Zhuravlev
Abstract:
A family of holographic subsurface radars, named RASCAN, has been produced during more than fifteen years. This radar system is based on classical principles of radar technology. Monochromatic signal is emitted into the subsurface, and reflected by heterogeneities with dielectric constant different from the medium. The reflected signal is received by the radar antenna, amplified, processed, and displayed on a computer screen. Images are recorded by line-by-line sweeping the antenna across an investigated surface. The principle of image formation in holographic radar is the same as in the optical holography. The receiver of the device registers the interference pattern (or hologram) caused by mixture of the reference and scattered waves. Until recently RASCAN radar had the direct-gain receiver that registered only amplitude of reflected signal. It reduced quality of images reconstructed from amplitude holograms. This year the new generation of RASCAN radars with quadrature receiver have been developed at Bauman Moscow State Technical University. This technique allows to record the amplitude and phase of reflected signal. The Fourier-based computer algorithm is used for the reconstruction of the recorded holograms. The results of computer simulation and laboratory experiments show effectiveness of image reconstruction algorithm. The images obtained by new device have appreciably better quality, than by old one. In contrast to optical holography the reconstruction algorithm produces not the direct shape of object but its reflectivity function. In most cases the form of this function allows to easily recognize the object.
Pages: 51-58
References
  1. Vasiliev I.A., Ivashov S.I., Makarenkov V.I., Sablin V.N., and Sheyko A.P. RF band high resolution sounding of building structures and works // IEEE Aerospace & Electronic Systems Magazine. V. 14. No. 5. 25-28. May 1999.
  2. Ivashov S., Razevig V., Vasilyev I., Zhuravlev A., Bechtel T., and Capineri L. The holographic principle in subsurface radar technology // International Symposium to Commemorate the 60th anniversary of the Invention of Holography, Springfield, Massachusetts, USA. October27-29. 2008. P. 183-197.
  3. Ивашов С.И., Васильев И.А., Журавлев А.В., Разевиг В.В. Разработка технологии голографических подповерхностных радиолокаторов и ее применение // Успехи современной радиоэлектроники. 2009. №1-2. С. 5-18.
  4. Разевиг В.В., Васильев И.А., Журавлев А.В., Ивашов С.И. Применение голографических подповерхностных радиолокаторов для обследования и диагностики конструкционных материалов // III Всероссийская научн.-техн. конф. «Радиолокация и радиосвязь». 26-30 октября 2009. Москва. Т. 1. С. 173-177.
  5. Chapursky V.V., Ivashov S.I., Razevig V.V., Sheyko A.P., Vasilyev I.A. Microwave hologram reconstruction for the RASCAN type subsurface radar // Proceedings of the Ninth International Conference on Ground Penetrating Radar, GPR-2002. April 29 - May 2 2002. Santa Barbara, California USA. P. 520-526.
  6. Gabor D. A new microscopic principle // Nature. 161. 1948. P. 777-778.
  7. Leith E.N., and Upatnieks J. Reconstructed wave fronts and communication theory // J. Opt. Soc. America.52.No. 4. XIV Advertisement.1962.
  8. Boyer A.L. Reconstruction of ultrasonic images by backward propagation // in Acoustic Holography. New York: Plenum. 1970. V. 3. P. 333-384.
  9. Soumekh M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging // IEEE Trans. Signal Processing. Sept. 1991.V. 39.P. 2044-2055.
  10. Soumekh M. A system model and inversion for synthetic
    aperture radar imaging // IEEE Trans. Image Processing. Jan. 1992. V. 1. P. 64-76.
  11. Soumekh M. Fourier Array Imaging. Englewood Cliffs. NJ: Prentice-Hall. 1994.
  12. Sheen D.M., McMakin D.L., and Hall T.E. Three-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection // IEEE Transactions on Microwave Theory and Techniques. Sept. 2001. V. 49. No. 9.
  13. McMakin D.L., Sheen D.M., Griffin J.W., and Lechelt W.M. Extremely high-frequency holographic radar imaging of personnel and mail // Sensors, and Command, Control, Communications, and Intelligence (C31) Technologies for Homeland Security and Homeland Defense V, edited by Edward M. Carapezza. Proc. ofSPIEV. 6201. 62011W. 2006.
  14. Бреховских Л. Волны в слоистых средах. Л.:Наука. 1973.
  15. OSHA, Cincinnati Technical Center (May 20, 1990). Electromagnetic Radiation and How It Affects Your Insturments. Near field vs. Far field. http://www.osha.gov/SLTC/ radiofrequencyradiation/electromagnetic_fieldmemo/ electromagnetic.html#section_6.
  16. Chapursky V.V., Ivashov S.I., Razevig V.V., Sheyko A.P., Vasilyev I.A., Pomozov V.V., Semeikin N.P., D.J. Desmond Subsurface Radar Examination of an Airstrip // Proceedings of the 2002 IEEE Conference on Ultra Wideband Systems and Technologies, UWBST'2002. May20-23. 2002. Baltimore, MarylandUSA. P. 181-186.
  17. Балтийский С.А., Гуров И.П., Де Никола С., Коппола Д., Ферраро П. Современные методы цифровой голографии // Проблемы когерентной и нелинейной оптики / под ред. И.П. Гурова и С.А. Козлова. СПб: СПбГУ ИТМО. 2004. С. 91-117.
  18. Тихонов А.Н. О регуляризации некорректно поставленных задач // Докл. АНСССР. 1963. Т. 153. №1. С.49-53.
  19. Razevig V.V., Ivashov S.I., Vasiliev I.A., Zhuravlev A.V., Bechtel T., Capineri L. Advantages and Restrictions of Holographic Subsurface Radars. Experimental evaluation. Proceedings of the 13thInternational Conference on Ground-Penetrating Radar. GPR 2010.21-25 June 2010.Lecce, Italy.P. 657-662.