350 rub
Journal Achievements of Modern Radioelectronics №8 for 2010 г.
Article in number:
Analysis of Multi-Beam Immersion Lens Antenna for High-Sensitive Submillimeter Wave Transition-Edge Sensor
Authors:
A. V. Uvarov, S. V. Shitov, A. N. Vystavkin
Abstract:
Multi-beam antenna for imaging array detector based on transition-edge sensor development approach was considered in the paper. An integral immersion lens antenna with double-slot planar feed placed into lens focus was examined. Analysis method is based on the numerical simulation of properties of the immersion lens antenna, and consists of ray-tracing technique and diffraction theory combination. The diffraction problem at the lens was reduced to the calculation of the Kirchhoff-Huygens integral. An approximation of a sinusoidal magnetic current distribution along the slots was made. Optimal configuration of a single planar double slot antenna with a symmetrical radiation pattern was obtained as a result of numerical analysis: l=0,28λ, (1а) d=0,155λ0, (1b) where λ0 - wavelength in vacuum, l - slot length, а d - the distance between the slots. It was shown that the highest directivity of immersion extended hemispherical lens antenna is achieved when the distance between the feeder and the center of the spherical surface of the lens associated with the radius as: Lext≈(0.34...0.36). Conception of multi-beam immersion lens antenna with rectangular double-slot feed array was considered. Quasioptical system for effective coupling multi-beam immersion lens antenna pattern with a telescope was proposed. Theoretical possibility to increase focal plane array packing density versus a feed-horn array with the same value of aperture efficiency was illustrated. The results of numerical simulations showed that for a double slot feed array of immersion lens antenna filling factor can be increased up to 25%. Restriction on the minimum diameter of the immersion lens was deduced from the criterion of acceptable level of aberration for the extreme elements of the planar feed array. The results of the evaluation suggest the usefulness of multi-beam immersion lens antennas for millimeter and submillimeter wave telescopes with small sizes of the focal region.
Pages: 43-50
References
  1. Chattopadhyay, G, Chao-Lin Kuo, Day, P., Bock, J. J., Zmuidzinas, J., Lange, A., E. Planar Antenna Arrays for CMB Polarization Detection // Proccedings on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics Joint International Conferences (IRMMW-THz). 2007. P. 184-185.
  2. Alexopoulos, N. G., Katehi, P. B., Rutledge, D. B. Substrate Optimization for Integrated Circuit Antennas // Microwave Symposium Digest (IEEE MTT-S ). 1982. P. 190-192.
  3. Rutledge, D. B. and Muha, M.,Imaging antenna arrays // IEEE Trans. on Antennas and Propagation. 1982. V. 30. P. 535-540.
  4. Rebeiz, G., Millimeter-wave and Terahertz Integrated Circuit Antennas // Proceedings of the IEEE. 1992. V. 80. N. 11. P. 1748-1770.
  5. Rebeiz, G. M., Regehr, W. G., Rutledge, D. B., Submillimeter-wave Antennas on Thin Membranes // International Journal of Infrared and Millimeter Waves. 1987. V.8. N. 10. P. 1194-1197.
  6. Filipovic, D. F., Gearhart, S. S., andRebeiz, G. M., Double-slot antennas on extended hemispherical and eeliptical silicon dielectric lenses // IEEE Trans. on Microwave Theory Tech. 1993. V. 41. P. 1738-1749.
  7. Ariyoshi, S., Otani, C., Dobroiu, A., Sato, H., Kawase, K., Shimizu, H. M., Tiano, T., Matsuo, H., Terahertz Imaging with Direct Detector Based on Superconducting Tunnel Junctions // Applied Physics Letters. 2006. V. 80. I .20. P. 203503 - 203503-3.
  8. Выставкин А. Н. Микроболометр субмиллиметрового диапазона на горячих электронах с андреевским отражением для радиоастрономии // Изв. вузов. Радиофизика. 2003. Т. 46. № 8-9. С. 813-821.
  9. Андреев А. Ф. Теплопроводность промежуточного состояния сверхпроводников // ЖЭТФ. 1964. Т. 46. Вып. 5. С. 1823-1828.
  10. Shitov, S. V., Vystavkin, A. N., A design analysis of imaging radiometer with antenna-coupled transition-edge sensors // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006. V. 559. I. 2. P. 503-505.
  11. Vystavkin, A. N., Pestriakov, A. V., Vinogradov, E. A., Application of the blackbody radiation source for characteristics measurement of submillimeter low temperature direct detectors // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006. V. 559. I. 2. P. 570-572.
  12. Uvarov, A. V., Shitov, S. V., Bankov, S. E., Zabolotny, V. F., Koryukin, O. V.and Vystavkin, A. N., Integrated Immersion Lens Antennas for Millimeter and Submillimeter Wave Array Detectors // Proceedings of 6th International Conference on Antenna Theory and Techniques (ICATT'07). 2007. P. 379-381.
  13. Van der Vorst, M. J. M., Integrated lens antennas for submillimetre-wave applications // PhD thesis. 1999.
  14. Vystavkin, A. N., Shitov, S. V., Kovalenko, A. G., Pestriakov, A. V., Cohn, I. A., Uvarov, A. V., Arrays of TES direct detectors for supersensitive imaging radiometers of 1.0 - 0.2 mm waveband region // Proceedings #WPP264 of European Space Agency, Seventh International Workshop on Low Temperature Electronics, WOLTE-7. 2006. P. 101-108.
  15. Griffin, M. J., Bock, J. J., andGear, W. K., Relative performance of filled and feedhorn-coupled focal-plane architectures // Applied Optics. 2002. V. 41. P. 6543-6554.
  16. Goldsmith, P. F., Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Application // IEEE Press. 1997.