350 rub
Journal Achievements of Modern Radioelectronics №6 for 2010 г.
Article in number:
Silicon Nanoelectronics: Problems and Prospects
Authors:
Valiev K. A., Vyurkov V. V., Orlikovsky A. A.
Abstract:
Issues and prospects of the silicon-based electronics are overviewed. The nearest technological break-through is undoubtedly connected with employment of - silicon-on-insulator - structures with an ultrathin fully depleted body (UTB FD SOI MOSFET). Combining with metallic gates and high-k gate dielectrics it allows achieving a smaller size of elements, lower power consumption and higher frequencies of operation. The simulation of such transistors was performed with the help of quantum approach. It reveals the impact of realistic imperfections (random charged centers in a channel and rough channel walls) on a dispersion of characteristics of transistors in a circuit. A comparison of a SOI MOSFET with competing devices is presented. Solid-state implementations of a quantum computer which can be fabricated by micro- and nanotechnology means are reviewed.
Pages: 7-22
References
  1. Vasileska D., Khan H.R., Ahmed. S.S. // Int. J. of Nanoscience. 2005. V. 4. P. 305.
  2. Валиев К.А. Физика субмикронной литографии. М.: Наука. 1990.
  3. Валиев К.А., Ивин В.В., Кудря В.П., Махвиладзе Т.М. // В кн.: Квантовые компьютеры, микро- и наноэлектроника. Труды ФТИАН / под ред. А.А. Орликовского. М.: Наука. 2005. Т. 18. С. 219.
  4. Peng Sh., French R.H., Qiu W., Wheland R.C., Yang M., Lemon M.F., Crauford M.K.// Proc. SPIE. 2005. V. 5754 (SPIE, Bellingham, WA.).
  5. Лебединский Ю.Ю., Пушкин М.А., Баранцев Н.С.,  Неволин В.Н.Вопросы термической стабильности сверхтонких слоев оксидов металлов с высоким ε (high-κ dielectrics) в контакте с Si // Всероссийский семинар «Перспективные технологии и устойства микро- и наноэлектроники». ФТИАН. 2006.
  6. Лебединский Ю.Ю., Зенкевич А.В., Баранцев Н.С., Неволин В.Н.Поиск материалов для металлических затворов в перспективных КМОП-приборах // Всероссийский семинар «Перспективные технологии и устойства микро- и наноэлектроники». ФТИАН. 2006.
  7. Takahashi K., et al. // Jap. J. Appl. Phys. 2003. V. 44. P. 2210.
  8. Handbook of plasma immersion ion implantation / Ed. A. Andersen. N.Y.: Wiley. 2000.
  9. Аверкин С.Н. и др. // В кн.: Квантовые компьютеры, микро- и наноэлектроника / под ред. А.А. Орликовского. Труды ФТИАН. М.: Наука. 2005. Т. 18. С. 121.
  10. Орликовский А.А. Плазма в субмикронной технологии микроэлектроники // В кн.: Энциклопедия низкотемпературной плазмы / под ред. В.Е. Фортова. М.: Наука. 2000. Т. IV. С. 370.
  11. Wong H.-S.Ph. // Solid-State Electronics. 2005. V. 49. P. 755.
  12. Celler G.K., Cristoloveanu S. // J. Appl. Phys. 2003. V. 93.
    P. 4955.
  13. Вьюрков В.В., Орликовский А.А., Сидоров А.А. Микроэлектроника. 2003. Т. 32. С. 283.
  14. Gilbert M.J., Ferry D.K. Resonant behavior and discrete dopant effects in narrow ultrashort ballistic silicon-on insulator metal-oxide-semiconductor field effect transistor // J. Vac. Sci. Technol. 2004. V. 22. P. 2039-2044.
  15. Gilbert M.J., Ferry D.K. Efficient quantum three-dimensional modeling of fully depleted ballistic silicon-on-insulator metal-oxide-semiconductor field-effect-transistors// J. Appl. Phys. 2004. V. 95. P. 7954-7960.
  16. Сидоров А.А., Вьюрков В.В., Орликовский А.А. Моделирование кремниевых полевых нанотранзисторов с учетом квантовых эффектов // В кн.: Квантовые компьютеры, микро- и наноэлектроника / под ред. А.А. Орликовского. ТрудыФТИАН. М.: Наука. 2005. Т. 18. С. 327.
  17. Ananiev S.D., V'yurkov S.D., Lukichev V.F. Surface scattering in SOI field-effect transistor // Proc. SPIE. 2006. V. 6260.
  18. Orlikovsky A., Vyurkov V., Lukichev V., Semenikhin I., Khomyakov A. All quantum simulation of ultrathin SOI MOSFET // Nanoscaled Semiconductor-on-Insulator Structures and Devices. Springer. 2007. P. 323-340.
  19. Вьюрков В.В., Лукичев В.Ф., Орликовский А.А., Семенихин И.А., Хомяков А.Н. Квантовое моделирование кремниевых полевых нанотранзисторов // Труды ФТИАН. 2008. Т. 19. С. 195-216.
  20. Vyurkov V., Semenikhin I., Lukichev V., Burenkov A., and Orlikovsky A. All-quantum simulation of an ultra-small SOI MOSFET // Proc. SPIE. 2008. V. 7025. P. 70251K.
  21. Vyurkov V. Quantum simulation of field effect transistors // Information and Brokerage Conference on FP7 ICT-THEME. Moscow. 21-23 October 2008.
  22. Orlikovsky A.A., Vyurkov V.V., Lukichev V.F., and Semenikhin I.A. All quantum model of a silicon field effect transistor // Nanotechnology International Forum. 3-5 Dec. 2008. Moscow: Book of Abstracts.
  23. Ernst T., Munteanu D., et al.  Ultimately thin SOI MOSFETs: Special characteristics and mechanism // Proc. IEEE 1999. Int. SOI Conf., Rohnert Park (California, USA). Oct. 1999.
  24. Popov V.P., Antonova I.V., Stas V.F., et al. Properties of extremely thin silicon layer in silicon-on-insulator structure // J. Mater. Sci. Eng. 2000. V. B73. P. 82-86.
  25. Uchida K., Takagi S. Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal-oxide-semiconductor field-effect transistors// Appl. Phys.  Lett. 2003. V. 82. P. 2916-2918.
  26. Lolivier J., et al. // Intern.SOI Conf. Proc. Hawaii. IEEE. 2005. P. 2.6
  27. Landauer R. Transport as a Consequence of the Incident Carrier flux, in Localization, Interaction, and Transport Phenomena / Bergmann G. and  Buynseraede Y., Eds. Springer-Verlag. Heidelberg. 1985. P. 38.
  28. Buttiker M. Symmetry of electrical conduction // IBM J. Res. Dev. 1988. V. 32. P. 317.
  29. Ahn C., Shin M. // IEEE Tr. Nanotechnology. 2006. V. 5. P. 278.
  30. Toh E.-H., et al. // Appl. Pys. Lett. 2007. V. 91. P. 243505.
  31. Averin D.V., Likharev K.K. Mesoscopic Phenomena in Solids / Edited by B.L. Altshuler, P.A. Lee, and R.A. Webb. Elsevier, Amsterdam, 1991.

  32. Durkop T., Kim B.M., and Fuhrer M.S. Properties and applications of high-mobility semiconductor nanotubes (Topical Review) // J. Phys.: Condens. Matter. 2004. V. 16.
    P. R553-R580.
  33. Sander J. Tans; Alwir R. M. Verschueren; Cees Dekker. Room-temperature transistor based on a single carbon nanotubes // Nature. 1998. V. 393. P. 49.
  34. Chen Z., Appenzeller J., Knoch J., Lin Y., and Avouris P. The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistor // Nanoletters. 2005. V. 5.
    P. 1497-1502.
  35. Novoselov K.S., et al. // Nature. 2005. V. 438. P. 197.
  36. Perkins B.R., Wang D.P., Soltman D., Yin A.J., Xu J.M., and Zaslavsky A. Differential current amplification in three-terminal Y-junction carbon nanotube devices // Appl. Phys. Lett. 2005. V. 87. P. 123504.
  37. Bandyopadhyay S., Cahay M. Reexamination of some spintronic field-effect device concepts // Appl. Phys. Lett. 2004. V. 85. P. 1433-1435.
  38. Бычков Ю.А., Рашба Э.И. // Письма в ЖЭТФ. 1984. Т. 39. С. 66.
  39. Kane B.E. A silicon-based nuclear spin quantum computer // Nature. 1998. V. 393. P. 133.
  40. Валиев К.А. Квантовые компьютеры и квантовые вычисления // УФН. 2005. Т. 175. С. 3.
  41. Vyurkov V., Gorelik L., and Orlikovsky A. Non-demolishing measurement of a spin qubit state via Fano resonance. ArXiv: 0806.4339. V.2. 4 Jul 2008.
  42. Fedichkin L., Yanchenko M., and Valiev K.A. // Nanotechnology. 2000. V. 11. P. 387.
  43. Shinkai G., Hayashi T., Ota T., and Fujisawa T. // Phys. Rev. Lett. 2009. V. 103. P. 056802.
  44. Filippov S., Vyurkov V., and Gorelik L. Quntum computing based on space states without charge transfer. ArXiv: 0903.1056. V.2 [quant-ph]. 6 March 2009.
  45. Tsukanov A.V. Controlled-phase operation on two remote charge qubits via conditionalelectron dynamics in auxiliary structure // Optics Communications. 2009. V. 282. P. 4175-4181.
  46. Wineland D.J., et al. Quantum control, quantum information processing, and quantum-limited metrology with trapped ions // ArXiv: quant-ph/05.08.025. V. 1. 2 Aug 2005
  47. Home J.P., et al. Complete Methods Set for Scalable Ion Trap Quantum Information Processing // Science. 2009.
    V. 325. P. 1227.
  48.  Politi A., Cryan M.J., Rarity J.G., Siyuan Yu., O-Brien J.L. Silica-on-Silicon Waveguide Quantum Circuits // Science. 2008. V. 320. P. 646.