350 rub
Journal Achievements of Modern Radioelectronics №5 for 2010 г.
Article in number:
Radiofrequency Impedance Spectroscopy of the Interaction of the High-Power Laser Radiation with Nonlinear-Optical Crystals
Authors:
Ryabushkin O.A., Konyashkin A.V., Myasnikov D.V., Doronkin A.V., Tyrtyshnyy V.A.
Abstract:
Radiofrequency (RF) spectroscopy method is elaborated and employed for the investigation of the interaction of the laser radiation with nonlinear-optical crystals. Radiofrequency impedance spectroscope is developed for the investigation of the high-power laser radiation influence on the piezoelectric resonances in the optical crystals. Mathematical model for the determination of the inhomogeneous crystal temperature distribution for the case of the nonlinear-optical conversion of the laser radiation in the crystal volume is proposed
Pages: 54-64
References
  1. Barsoukov, E., Macdonald, J. R. Impedance spectroscopy, theory, experiment, and application: 2nd edition. Wiley-Interscience. Hoboken. New Jersey. 2005.
  2. Mark, E. Orazem, Bernard Tribollet Electrochemical Impedance Spectroscopy: Wiley-Interscience. Hoboken. New Jersey. 2008.
  3. Siegfried Haussuhl Physical Properties of Crystals: Wiley-VCH. Verlag GmbH. 2007.
  4. Handbook of Photonics / 2nd edition by Mool C. Gupta, J. Ballato (editors): CRC Press by Taylor and Francis Group. 2007. Part III. Ch. 6.
  5. Chu, D.K.T., Bierlein, J.D., Hunsberger, R.G., Piezoelectric and Acoustic Properties of Potassium Titanyl Phosphate (KTP) and Its Isomorphs // IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control. 1992. 39(6). Р. 683-687.
  6. Konyashkin A. V., Doronkin A. V., Tytyshnyy V. A., Myasnidov A. V., Ryabushkin O. A. Resonant acoustic spectroscopy of the interaction of the single-mode nigh-power laser radiation with crystals // 15th International conference on photoacoustic and photothermal phenomena (ICPPP 15) // J. Phys.: Conference Series. 2010. V. 214. P. 012064 (1)?(4).
  7. Myasnikov A. V., Doronkin A. V., Konyashkin A. V., Ryabushkin O. A. Model of resonant acoustic spectroscopy of interaction of highpower single-mode laser radiation with crystals // ICPPP 15 J. Phys.: Conf. Ser. 2010. V. 214. P. 012063 (1)?(4).
  8. Doronkin A. V., Konyashkin A. V., Tyrtyshnyy V. A., Myasnikov D. V., Ryabushkin O. A. Kinetics of the acoustic resonances in nonlinear-optical crystals during the interaction with the single-mode high-power laser radiation // ICPPP 15. J. Phys.: Conf. Ser. 2010. V. 214. P. 012043 (1)?(5).
  9. Мясников Д. В., Коняшкин А. В., Рябушкин О. А. Идентификация собственных мод объемных пьезоэлектрических резонаторов в акусторезонансной спектроскопии // Письма в ЖТФ. 2010. № 36(13). С. 103-110.
  10. Konyashkin, A.V., Doronkin, A.V., Tyrtyshnyy, V.A., etal. Resonant acoustic calorimetry of the interaction of high-power laser radiation with crystals // Ninth International Conference on Solid State Lighting, San Diego. California (2 - 6 August 2009) Proc. of SPIE. V. 7422. P. 742217-1 - 742217-11.
  11. Коняшкин, А.В., Доронкин, А.В., Тыртышный, В.А., Рябушкин О.А. Радиочастотно-импедансный спектроскоп для исследования взаимодействия мощного лазерного излучения с кристаллами // Приборы и техника эксперимента. 2009. Т. 6. С. 60 - 68.
  12. Bezancon, F., Mangin, J., Stimer, P., and  Maglione, M. Accurate Determination of the Weak Optical Absorption of Piezoelectric Crystals Used as Capacitive Massive Bolometers //IEEE J. Quantum Electron. 2001. V. 37(11). P. 1396 - 1400.
  13. Mürk, V., Denks, V., Dudelzak, A., Prolux, P.-P., Vassiltsenko, V. Gray traks in KTiOPO4: Mechanism of creation and bleaching // Nuc. Inst. and Meth. in Phys. Res. B. 1998. V.141. P. 472 - 476.
  14. Roger, M. Wood.,Laser-induced damage of optical materials: IOP publishing LTD. 2003. P. 198-207.
  15. Yoshida, H., Fujita, H., Nakatsuka, M.,et al. Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction // Jap. J. Appl. Phys. 2006. V. 45(2a). P. 766-769.
  16. Блистанов А.А.Кристаллы квантовой и нелинейной оптики: М.: Миссис. 2000.
  17. Дмитриев В.Г., Тарасов Л.В., Прикладная нелинейная оптика. Изд. 2-е. М.: Физматлит. 2004.
  18. Nikogosyan, David N. Nonlinear Optical Crystals a Complete Survey: Springer Science+Business Media. Inc. 2005. P. 35-74.
  19. Ogi, H., Kawasaki, Y., Hirao, M.Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients // J. of Appl. Phys. 2002. V. 92(5). P. 2451-2456.
  20. Сорокина Н.И., Воронкова В.И. Структура и свойства кристаллов семейства титанил-фосфата калия // Кристаллография. 2007. Т. 52(1). С. 82-95.
  21. Choi, B.C., Kim, J.B., Kim, J.N. Ionic conduction associated with polaronic hopping in KTiOPO4 single crystal //Solid State Communications. 1992. V. 84(11). P. 1077-1080.
  22. Park, J.-H., Kim, C.-S., Choi B.-C., et al. Impedance spectroscopy of KTiOPO4 single crystal in the temperature range - 100 to 100 °C// Appl. Phys. A. 2004. V. 78. P. 745-748.
  23. Furusawa, S.-I., Hayasi, H., Yoshihiro, Y., et al, Ionic Conductivity of Quasi-One-Dimensional Superionic Conductor KTiOPO4 Single Crystal // J. of Phys. Soc. of Japan. 1993. V. 62(1). P. 183 - 195.
  24. Hordvik A. Measurement techniques for small absorption coeffi­cients: recent advances // Appl. Opt. 1977. V. 16(11).
    P. 2827-2833.
  25. ISO 13697: Test methods for specular reflectance and regular transmittance of optical laser components / International Organization for Standartization. Geneva, Switzerland. 2006.
  26. Hansson, G., Karlsson, H., Wang, S., and Laurell, F. Transmission measurements in KTP and isomorphic compounds // Appl. Opt. 2000. V. 39(27). P. 5058-5069.
  27. Sirutkatis, V., Balachinaite, O., Maciulevicius, M., et al. Optical characterization in wide spectral and temporal range // Proc. of the Symposium on Photonics Technologies for 7th Framework Program. Wroclaw 12-14 October. 2006. P. 78-87.
  28. Stefan, H., Luck, H., Winkler W., et al. Measurement of a low-absorption sample of OH-reduced fused silica // Appl. Opt. 2006. V.45(28). P. 7269-7272.
  29. Bralkowski Stepen E. Photothermal Spectroscopy Methods for Chemical Analysis Volume 134 Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications / John Wiley & Sons. Inc. New York. 1996.
  30. Hotdvik, A., and Schlossberg, H.Photoacoustic technique for determining optical absorption coefficients in solids // Appl. Opt. 1977. V. 16(1). P. 101-107.
  31. Rosencwaig, A., and Hindley, T.W. Photoacoustic measurements of low-level absorption in solids // Appl. Opt. 1981. V.20(4). P. 606-609.
  32. Yu, C., McKenna, M.J., White, J.D., and Maynard, J.D. A new resonant photoacoustic technique for measuring very low optical absorption in crystals and glasses // J. Acoust. Soc. Am. 1992. V. 91(2). P. 868-877.
  33. Handbook of thermal analysis and calorimetry (principles and practice) / Ed. Michael E. Brown: Elsevier Scien. B. V., Amsterdam. The Netherlands. 1998. V. 1.
  34. Pinnow, D.A., Rich, T.C., Development of a Calorimetric Method for Making Precission Optical Absorption Measurements // Appl. Opt. 1973. V. 12(5). P. 984 - 992.
  35. Willamowsky, U., Ristau, D., and Welsch E., Measuring the absolute absorptance of optical laser components // Appl. Opt. 1998. V. 37(36). P. 8362-8370.
  36. ISO 11551: test method for absorptance of optical laser components / International Organization for Standartization. Geneva, Switzerland. 2003.
  37. Ohno, I. Rectangular Parallelepiped Resonance Method for Piezoelectric Crystals and Elastic Constants of Alpha-Quartz // Phys. Chem. Minerals. 1990. V. 17. P. 371 - 78.
  38. Demarest, H. Cube-Resonance Method to Determine the Elastic Constants of Solids // J. Acoust. Soc. Am. 1971. V. 49(3). P. 768-775.