350 rub
Journal Achievements of Modern Radioelectronics №2 for 2010 г.
Article in number:
Microwave Power Divider/Combiners
Authors:
V.A. Pechurin, A.S. Petrov
Abstract:
The analysis of the results achieved in the miniaturized microwave power dividers/combiners in the period from 2001 to 2009 is presented in this review. The structures of approximately 50 new or modified devices are described and design equations are derived. Conclusions about the directions and results of the progress in the miniaturized microwave power dividers/combiners are drawn. Firstly, methods of cardinal reduction of the overall size of devices that can be now placed on the body of monolithic integrated circuit are suggested. The success is achieved by the following: using hybrid circuits that consist of elements with distributed and lumped parameters; including into the circuits special types ?, T - and combined  ? T - sections; fractal topological realization of the devices. Secondly, double - and multifrequency operating modes of power dividers/combiners is achieved. Besides, frequency ratios can be actually not equal to integer number. Thirdly, effective band enchantment of the hybrid ring operating frequency is achieved by attaching matching circuits in input and using combined right-hand and left-hand circuits. Right-hand circuits were realized on transmission lines or low-frequency filters, when left-hand circuits are performed on the basis of high-frequency filters. Using of right-hand and left-hand circuits also allows performing unusual devices with zero phase length in the broad band as well as to develop quarter-phase and counter-phase power dividers on the basis of in-phase Wilkinson power dividers/combiners. Fourthly, new methods of balancing phase length difference of the coupled lines segments for even and odd mode were found. As a result, power dividers/combiners performed on such basis have distinctly better characteristics. Fifthly, new useful structures of miniaturized power dividers/combiners on 3D and solid integrated circuits were performed. Finally, sixthly, prototypes, named supreme circuit trans-projections, with ideal transformers and impedance/admittance invertors for 10 types of nonsymmetrical power dividers/combiners of interference type were proposed giving simple calculation equations.
Pages: 5-42
References
  1. Кузовкин И.Н., Петров А.С. Миниатюрные СВЧ-устрой­ства деления-суммирования мощности (Обзор) // Успехи современной радиоэлектроники. 2004. № 12. С. 12-46.
  2. Cohn S.B., Levy R. History of Microwave Passive Components with Particular Attention to Directional Couplers // IEEE Trans. on Microwave Theory and Techniques. 1984. V. MTT-32. No. 9. P. 1046-1054.
  3. Кац Б.М., Мещанов В.П., Карамзина В.В. Делители мощности СВЧ. М.: ЦНИИ Электроника. Обзоры по электронной технике. 1988.
  4. Сазонов Д.М., Гридин А.Н., Мишустин Б.А. Устройства СВЧ. М.: Высшая школа. 1981.
  5. МодельЗ.И.Устройства сложения и распределения мощностей высокочастотных колебаний. М.: Сов. радио. 1980.
  6. Гвоздев В.И., Нефедов Е.И. Объемные интегральные схемы СВЧ. М.: Наука. 1985.
  7. Ред Э. Справочное пособие по высокочастотной схемотехнике: Схемы, блоки, 50-омная техника. Пер. с нем. М.: 1990.
  8. Фельдштейн А.Л. Справочник по элементам полосковой техники. М.: Связь. 1979.
  9. Зелях Э.В., Фельдштейн А.Л., Явич Л.Р., Брилон В.С. Миниатюрные устройства УВЧ- и ОВЧ-диапазонов на отрезках линий. М.: Радио и связь. 1989.  
  10. Маттей Д.Л., Янг Л., Джонс Е.М.Т. Фильтры СВЧ, согласующие цепи и цепи связи. Т.1. М.: Связь. 1971.
  11. Woo D.J., Lee T.K.Suppression of harmonics in Wilkinson power divider using dual-band rejection // IEE Trans. 2005. V.MTT-53. No. 6. P. 2139-2144.
  12. Wu L., Sun Z., Yilmaz H., Berroth M. A dual-frequency Wilkinson power divider// IEEE Trans. 2006. V. MTT-54. No. 1. P. 278-284.
  13. Monzon C. A small dual-frequency transformer in two section// IEEE Trans. 2003. V. MTT-51. No. 4. P. 1157-1161.
  14. Cheng K.-K.M, Law C. A novel approach to the design and implementation of dual-band power divider// IEEE Trans. 2008. V. MTT-56. No. 2. P. 487-492.
  15. Horst S., Bairavasubramanian R., Tentzeris M.M., Papapolymerou J. Modified Wilkinson power dividers for  millimeter-wave integrated circuits // IEEE Trans. 2007. V. MTT-55. No. 11. P. 2439-2446.
  16. Park M-J. Dual-band Wilkinson divider with coupled output port extensions// IEEE Trans. 2009. V. MTT-57. No. 9.
    P. 2232-2237.
  17. Wu Y., Liu Y., Zhang Y., Gao J., Zhou H. A dual band unequal wilkinson power divider without reactive components // IEEE Trans. 2009. V. MTT-57. No. 1. P. 216-222.
  18. Oraizi H., Ali-Reza Sharifi A.R. Design and optimization of broadband asymmetrical multisection Wilkinson power divider // IEEE Trans. 2006. V. MTT-54. No. 5. P. 2220-2231.
  19. Cohn S. B.A new class of broadband three-port TEM-mode hybrids // IEEE Trans. on Microwave Theory and Techniques. 1968. V. MTT-16. No. 2. P. 110-116.
  20. Lee S.-W., Kim C.-S., Choi K. S., Park J.-S., Ahn D. A general design formula of multi-section power divider based on singly terminated filter design theory // MTT-S International Microwave Symposium Digest. 2001. V. II. P. 1297-1300.
  21. Ooi B.L.Compact EBG in-phase hybrid-ring equal power divider // IEEE Trans. 2005. V. MTT-53. No. 7. P. 2329-2334.
  22. Palei W., Leong M.S., Broad-banding technique for in-phase hybrid ring equal power divider // IEEE Trans. Microw. TheoryTech. Jul. 2002. V. 50. No. 7. P. 1790-1794.
  23. Маппыров В.Д., Печурин В.А., Петров А.С. Двухканальный синфазный делитель мощности с расширенной полосой частот по развязке // Радиотехника. 2009. C. 57-59.
  24. Чон К. - Х., Петров А.С.Идеальные делители тока и напряжения в симметричных многоканальных СВЧ-устройствах распределения мощности // Электромагнитные волны и электронные системы. 2001. T.6. № 2-3. С.54-63.
  25. Кузовкин И.Н., Петров А.С.Схемы-прототипы 4-плеч­ных гибридных кольцевых делителей мощности // Радио­техника и электроника. 2004. Т. 49. № 8. C.919-926
  26. Tang C.W., Chen M.G Design of multipassband microstrip branch-line couplers with open stubs // IEEE Trans. 2009. V.MTT-57. No. 1. P. 196-204.
  27. Hsu C.L., Kuo J.T., Chang C.W. Miniaturized dual-band hybrid couplers with arbitrary power division ratios // IEEE Trans. 2009. V. MTT-57. No. 1. P. 149-156.
  28. Eccleston K.W., Sebastian H.M. Ong S.H.M., Compact planar microstripline branch-line and rat-race couplers // IEEE Trans. 2003. V. MTT-51. No. 10. P. 2119-2125.
  29. Cheng K.-K.M., Wong F.L. A novel approach to the design and implementation of dual-band compact planar 90 branch-line coupler // IEEE Trans. 2004. V. MTT-52. No. 11. P. 2458-2463.
  30. Tang C.W., Chen M.G. Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth // IEEE Trans. 2007. V. MTT-55. No. 9. P. 1926-1934.
  31. Jung S.C., Negra R., Ghannouchi F.M. A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area // IEEE Trans. 2008. V. MTT-56. No. 12. P. 2950-2953.
  32. Zheng S.Y., Yeung S.H., Chan W.S., Man K.M., Leung S.H., Xue Q. Dual-Band Rectangular Patch Hybrid Coupler // IEEE Trans. 2008. V. MTT-56. No. 1. P. 1721-1728.
  33. Chi C.H., Chang C.Y. A new class of wideband multisection 180 hybrid rings using vertically installed planar couplers // IEEE Trans. 2006. V. MTT-54. No. 6. P. 2478-2486.
  34. Ahn H-R, Kim B. Small wideband coupled-line ring hybrids with no restriction on coupling power// IEEE Trans. 2009. V.MTT-57. No. 7. P. 1806-1817.
  35. Ghali H., Moselhy T.A.Miniaturized fractal rat-race, branch-line, and coupled-line hybrids // IEEE Trans. 2004. V. MTT-52.
    No. 11. P. 2513-2520.
  36. Liao S.S., Peng J.T. Compact planar microstrip branch-line couplers using the quasi-lumped elements approach  with nonsymmetrical and symmetrical T-shaped structure // IEEE Trans. 2006. V. MTT-54. No. 9. P. 3508-3514.
  37. Pedro de Paco, Verdu J., Menendez O., Corrales E. Branch-line coupler based on edge-coupled parallel lines with improved balanced response // IEEE Trans. 2008. V. MTT-56. No. 12. P. 2936-2941.
  38. Fathelbab W.M.The synthesis of a class of branch-line directional couplers // IEEE Trans. 2008. V. MTT-56. No. 8.
    P. 1985-1994.
  39. Lourandakis E., Schmidt M., Seitz S., Weigel R. Reduced size frequency agile microwave circuits using ferroelectric thin-film varactors // IEEE Trans. 2008. V. MTT-56. No. 12.
    P. 3093-3099.
  40. Кузовкин И.Н., Петров А.С.Микрополосковый шлейфный квадратурный мост, оптимизированный в сетке прямоугольной декартовой системы координат // Радиотехника. 2005. № 10. C. 109-114.
  41. Кузовкин И.Н., Петров А.С., Смирнова Е.В. Управление характеристиками СВЧ-делителей мощности, реализованных на четвертьволновых отрезках линий передачи // Радиотехника. 2006. № 12. С. 71-75.
  42. Печурин В.А., Петров А.С. Квадратурные делители-сумматоры среднего и высокого уровня мощности для диапазона УКВ // Успехи современной радиоэлектроники. 2009. №10. С.59-62.
  43. Okabe H., Caloz C.,ItohT. A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section // IEEE Trans. 2004. V. MTT-52. No. 3. P. 798-804.
  44. Сазонов Д. М., Гридин А. Н.. Техника СВЧ. Конспект лекций для студентов дневного и вечернего отделения радиотехнического факультета. М.: МЭИ. 1971.
  45. Lin I.L., DeVincentis M., Caloz C., Itoh T.Arbitrary dual-band components using composite right/left-handed transmission lines // IEEE Trans. 2004. V. MTT-52. V. 4. P. 1142-1149.
  46. Chi P-L., Itoh T., Fellow L.Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity system // IEEE Trans. 2009. V. MTT-57. No. 5. P. 1207-1215.
  47. Kuylenstierna D., Gunnarsson S.E., Zirath H. Lumped-element quadrature power splitters using mixed right/left-handed transmission lines // IEEE Trans. 2005. V. MTT-53. No. 8. P. 2616-2621.
  48. Caloz C., Sanada A. Itoh T. A Novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth // IEEE Trans. 2004. V. MTT-52. No. 3. P. 980-992
  49. Phromloungsri R., Chongcheawchamnan M. A high directivity design using an inductive compensation technique // Asia-Pacific Microw. Conf. Dec. 2005. P. 2840-2843.
  50. Phromloungsri R., Chongcheawchamnan M., Robertson I.D. Inductively compensated parallel coupled microstrip lines and their applications // IEEE Trans. 2006. V. MTT-54. No. 9. P. 3571-3582.
  51. M. DydykAccurate design of microstrip directional couplers with capacitive compensation // IEEE MTT-S Int. Microw. Symp. Dig. May 1990. P. 581-584.
  52. MarchS.L. Phase velocity compensation in parallel-coupled microstrip // IEEE MTT-S Int. Microw. Symp. Dig. Jun. 1982. P. 581-584.
  53. Chiu J.C., Lin C.M., Wang Y.H. A 3-dB Quadrature Coupler Suitable for PCB Circuit Design // IEEE Trans. 2006. V.MTT-54. No. 9. P. 3521-3525.
  54. Chin K.S., Ma M.C., Chen Y.P., Chiang Y.C. Closed-form equations of conventional microstrip couplers applied to design couplers and filters constructed with floating-plate overlay // IEEE Trans. 2008. V.MTT-56. No. 5. P. 1172-1179.
  55. Gruszczynski S., Wincza K., Sachse K. Design of compensated coupled-stripline 3-dB directional couplers, phase shifters, and Magic-T-s-Part I: Single-section coupled-line circuits // IEEE Trans. 2006. V.MTT-54. No. 11. P. 3986-3994.
  56. Gruszczynski S., Wincza K., Sachse K. Design of compensated coupled-stripline 3-dB directional couplers, phase shifters, and Magic-T-s- Part II: Broadband coupled-line circuits // IEEE Trans. 2006. V.MTT-54. No. 9. P. 3501-3507.
  57. Avrillon S. , Pele I., Chousseaud A., Toutain S. Dual-band power divider based on semiloop stepped-impedance resonators // IEEE Trans. 2003. V.MTT-51. No. 4. P. 1269-1273.
  58. Zheng S.H., Yeung S.H., Chan W.S., Man K.F., Leung S.H. Size-reduced rectangular patch hybrid coupler using patterned ground plane // IEEE Trans. 2009. V.MTT-57. No. 1. P. 180-188.
  59. Abbosh A.M. Design of ultra-wideband three-way arbitrary power dividers // IEEE Trans. 2008. V.MTT-56. No. 1. P. 194-201.
  60. Lap K. Yeung L.K., Wang Y.E. A Novel 180 hybrid using broadside-coupled asymmetric coplanar striplines // IEEE Trans. 2007. V. MTT-55. No. 12. P. 2635-2630.
  61. Napijalo V., Kearns B. Multilayer 180 coupled line hybrid coupler // IEEE Trans. 2008. V. MTT-56. No. 11. P. 2525-2535.
  62. U-yen K., J. Wollack E.J., Papapolymerou J., JLaskar J. A broadband planar Magic-T using microstrip-slotline transitions // IEEE Trans. 2008. V. MTT-56. No. 1. P. 172-177.
  63. Llamas M.A., Ribó M., Girbau D., Pradell L A rigorous multimodal analysis and design procedure of a uniplanar 180 hybrid // IEEE Trans. 2009. V. MTT-57. No. 7. P. 1832-1839.
  64. Yun Y.A Novel microstrip-line structure employing a periodically perforated ground metal and its application to highly miniaturized and low-impedance passive components fabricated on GaAs MMIC // IEEE Trans. 2005. V. MTT-53.
    No. 6. P. 1951-1959.
  65. Chin T-Y., Wu J-C., Chang S-F, Chang C-C. Compact S-/Ka-Band CMOS quadrature hybrids with high phase balance based on multilayer transformer over-coupling technique // IEEE Trans. 2009. V. MTT-57. No. 3. P. 708-715.
  66. Tseng S.C., Meng C., Chang C.H. , Chang S.H., Huang G.W. A silicon monolithic phase-inverter rat-race coupler using spiral coplanar striplines and its application in a broadband gilbert mixer // IEEE Trans. 2008. V. MTT-56. No. 8. P. 1879-1888.
  67. Hettak K., Morin G.A., Stubbs M.G. Compact MMIC CPW and asymmetric CPS branch-line couplers and Wilkinson dividers using shunt and series stub loading // IEEE Trans. 2005. V. MTT-53. No. 5. P. 1624-1635.