350 rub
Journal №1 for 2012 г.
Article in number:
Mathematical models of edge dislocation segment movement in an ultrasonic field
Authors:

V.T. Degtyarev, G.P. Pantukhov, A.J. Losev, P.A. Muzyka, A.E. Potapov

Abstract:

The method of mathematical modeling is widely used in the investigation of the effectacoustoplastic nowadays. Analytical mathematical formalism allows us to study the motion of dislocation segments, if the deflection of the segment much smaller than its length only. In this paper we use the equation obtained Natsekom and Chishko, and solved by the method of finite differences. The main advantage of this approach is to reduce the computational complexity of the solution than the methods previously proposed. Also, the proposed solution scheme is well paralleled that in the modern realities of computing, will significantly increase the speed of simulation. The software module was developed on the basis of the obtained solution, which allows to simulate the behavior of a dislocation segment under the influence of ultrasound, in accordance with the described mathematical model. The module shows the efficiency of the resulting model and allows us to investigate the behavior of segments with various parameters of ultrasound. Confirmation of the correctness of the proposed solution algorithm is to compare the results obtained from simulation experiments with existing data natural experiments carried out at Lomonosov Moscow State University.

Pages: 31-34
References
  1. Schmid E. G. Plasticity of insonated metals // Japan Jnst. Metals. 1968. №9. Р. 797.
  2. Логинов Б.М., Дегтярев В.Т., Тяпунина Н.А.Моделирование скольжения дислокаций через дислокационный лес колеблющихся дислокаций в кристаллах с ГПУ структурой // Кристаллография. 1987. Т.32. Вып. 4.  С.967 - 971.
  3. Нацик В.Д., Чишко К.А. Динамика и звуковое излучение дислокационного источника Франка-Рида: Препринт, ФТИНТ АН УССР. Харьков. 1976.
  4. Благовещенский В.В. Особенности размножения дислокаций и образования полос скольжения под действием ультразвука: Автореф. дис. - канд. физ.-мат. наук. М.: МГУ. 1982.
  5. Благовещенский В.В., Тяпунина Н.А. Особенности работы источника Франка-Рида под действием ультразвука //
    ДАН СССР. 1980. Т.254. № 4. С.869 - 872.