350 rub
Journal №4 for 2015 г.
Article in number:
MicroRNAS - new promising tumor biological markers and targets for chemotherapy. Part 3. therapeutic use of microRNA. Methods of measuring microRNA concentration
Authors:
A.N. Shirshova - Researcher, Laboratory of Pharmacogenomics, Institute of Сhemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk
M.A. Smetanina - Ph.D.(Biol.), Researcher, Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk
V.N. Aushev - Ph.D.(Med.), Senior Researcher, Laboratory of Oncogenes Regulation, Carcinogenesis Institute, N.N. Blokhin Russian Cancer Research Center, Moscow
M.L. Filipenko - Ph.D.(Biol.), Head of the Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Novosibirsk
N.E. Kushlinskii - Dr.Sc. (Med.), Professor, Head of the Clinical Biochemistry Laboratory, N.N. Blokhin Russian Cancer Research Center, Moscow
Abstract:
The data on the treatment of various diseases with the help of microRNAs and contemporary methods of microRNA concentrations measurement in biological fluids by means of real-time PCR technologies are reviewed. Examples of the application of primers from different manufacturers are shown.
Pages: 31-39
References
- Ishida M., Selaru F.M. miRNA-Based Therapeutic Strategies // Curr. Anesthesiol. Rep. 2013. V. 1. № 1. P. 63 - 70.
- Baker B.F., Lot S.S., Condon T.P. et al. 2\'-O-(2-Methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells // J. Biol. Chem. 1997. V. 272. № 18. P. 11994 - 12000.
- Si M.L., Zhu S., Wu H. et al. miR-21-mediated tumor growth // Oncogene. 2007. V. 26. № 19. P. 2799 - 2803.
- Weiler J., Hunziker J., Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease - // Gene Ther. 2006. V. 13. № 6. P. 496 - 502.
- Krützfeld J., Rajewsky N., Braich R. et al. Silencing of microRNAs in vivo with "antagomirs" // Nature. 2005. V. 438. № 7068. P. 685 - 689.
- Ebert M.S., Neilson J.R., Sharp P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells // Nat. Methods. 2007. V. 4. № 9. P. 721 - 726.
- Gumireddy K., Young D.D., Xiong X. et al. Small-molecule inhibitors of microrna miR-21 function // Angew. Chem. Int. Ed. Engl. 2008. V. 47. № 39. P. 7482 - 7484.
- Koshkin A., Singh S.K., Nielsen P. et al. LNA: synthesis of the adenine, cytosine, guanine 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition // Tetrahedron. 1998. V. 54. P. 3607 - 3630.
- Lindow M., Kauppinen S. Discovering the first microRNA-targeted drug // J. Cell Biol. 2012. V. 199. № 3. P. 407 - 412.
- Janssen H.L., Reesink H.W., Lawitz E.J. et al. Treatment of HCV infection by targeting microRNA // N. Engl. J. Med. 2013. V. 368. № 18. P. 1685 - 1694.
- Qiu Z., Dai Y. Roadmap of miR-122-related clinical application from bench to bedside // Expert. Opin. Investig. Drugs. 2014. V. 23. № 3. P. 347 - 355.
- Jiang J., Zheng X., Xu X. et al. Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin // PLoS One. 2011. V. 6. № 8. e23271.
- Stegmeier F., Hu G., Rickles R.J. et al. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells // Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 37. P. 13212 - 13217.
- Chung K.H., Hart C.C., Al-Bassam S. et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155 // Nucleic Acids Res. 2006. V. 34. № 7. P. e53.
- Kota J., Chivukula R.R., O\'donnell K.A. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model // Cell. 2009. V. 137. № 6. P. 1005 - 1017.
- Tsai K.W., Wu C.W., Hu L.Y. et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer // Int. J. Cancer. 2011. V. 129. № 11. P. 2600 - 2610.
- Xia L., Zhang D., Du R. et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells // Int. J. Cancer. 2008. V. 123. № 2. P. 372 - 379.
- Scholl V., Hassan R., Zalcberg I.R. miRNA-451: A putative predictor marker of Imatinib therapy response in chronic myeloid leukemia // Leuk. Res. 2012. V. 36. № 1. P. 119 - 121.
- Bai S., Nasser M.W., Wang B. et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib // J. Biol. Chem. 2009. V. 284. № 46. P. 32015 - 32027.
- Ling H., Fabbri M., Calin G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature reviews // Nat. Rev. Drug Discov. 2013. V. 12. № 11. P. 847 - 865.
- Di Martino M.T., Campani V., Misso G. et al.In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma // PloS one. 2014. V. 9. № 2. P. e90005.
- Velu C.S., Chaubey A., Phelan J.D. et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity // J. Clin. Invest. 2014. V. 124. № 1. P. 222 - 236.
- Huang X., Schwind S., Yu B. et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia // Clin. Cancer Res. 2013. V. 19. № 9. P. 2355 - 2367.
- Gong J.N., Yu J., Lin H.S. et al. The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia // Cell Death Differ. 2014. V. 21. № 1. P. 100 - 112.
- Ito M., Teshima K., Ikeda S. et al. MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6 in advanced cutaneous T-cell lymphoma // Blood. 2014. V. 123. № 10. P. 1499 - 1511.
- Chen C., Ridzon D.A., Broomer A.J. et al. Real-time quantification of microRNAs by stem-loop RT-PCR // Nucleic Acids Res. 2005. V. 33. № 20. P. e179.
- Mestdagh P., Feys T., Bernard N. et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA // Nucleic Acids Res. 2008. V. 36. № 21. P. e143.
- Yang H., Schmuke J.J., Flagg L.M. et al. A novel real-time polymerase chain reaction method for high through put quantification of small regulatory RNAs // Plant. Biotechnol. J. 2009. V. 7. № 7. P. 621 - 630.
- Hildebrand J., Grundhoff A., Gallinat S. et al. MicroRNA profiling during human keratinocyte differentiation using a quantitative real-time PCR method // Methods Mol. Biol. 2013. V. 961. P. 193 - 200.
- Sharbati-Tehrani S., Kutz-Lohroff B., Bergbauer R. et al. miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample // BMC Mol. Biol. 2008. V. 10. P. 9 - 34.
- Shi R., Chiang V.L. Facile means for quantifying microRNA expression by real-time PCR // Biotechniques. 2005. V. 39. № 4. P. 519 - 525.
- Shi R., Sun Y.H., Zhang X.H., Chiang V.L. Poly(T) adaptor RT-PCR // Methods Mol. Biol. 2012. V. 822. P. 53 - 66.
- Mohammadi-Yeganeh S., Paryan M., Mirab Samiee S. et al. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis // Mol. Biol. Rep. 2013. V. 40. № 5. P. 3665 - 3674.