350 rub
Journal №3 for 2015 г.
Article in number:
MicroRNA - new promising tumor biological markers and targets for chemothe-rapy. Part 2. Clinical studies of microRNA in oncologic diseases
Authors:
A.N. Shirshova - Researcher, Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian Branchof the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk M.A. Smetanina - Ph.D.(Biol.), Researcher, Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian Branchof the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk V.N. Aushev - Ph.D.(Med.), Senior Researcher, Laboratory of Oncogenes Regulation, Carcinogenesis Institute, N.N.Blokhin Russian Cancer Research Center, Moscow M.L. Filipenko - Ph.D.(Biol.), Head of the laboratory of pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine Siberian branchof the Russian Academy of Sciences, Novosibirsk N.E. Kushlinskii - Dr.Sc. (Med.), Professor, Head of the Clinical Biochemistry Laboratory, N.N. Blokhin Russian Cancer Research Center, Moscow
Abstract:
Results of microRNAs clinical studies in various oncologic diseases - gastric, breast, ovarian, lung and thyroid gland cancer, hemoblastosis - are presented in this review. Their role in disease clinical course and evaluation of tumor chemotherapeutic sensitivity, as well as in the overall and relapse-free survival prognosis is shown. The problems of targeted therapy with the help of microRNA agonists and antagonists are discussed.
Pages: 35-50
References

 

  1. Fareed K.R., Kaye P., Soomro I.N. et al. Biomarkers of response to therapy in oesophago-gastric cancer // Gut. 2009. V. 58. № 1. P. 127-143.
  2. Okusa Y., Ichikura T., Mochizuki H. Prognostic impact of stromal cell-derived urokinase-type plasminogen activator in gastric carcinoma // Cancer. 1999. V. 85. № 5. P. 1033-1038.
  3. Xiangming C., Hokita S., Natsugoe S. et al. p21 expression is a prognostic factor in patients with p53-negative gastric cancer // Cancer Lett. 2000. V. 148. № 2. P. 181-188.
  4. Kido S., Kitadai Y., Hattori N. et al. Interleukin 8 and vascular endothelial growth factor - prognostic factors in human gastric carcinomas - // Eur. J. Cancer. 2001. V. 37. № 12. P. 1482-1487.
  5. Shibata A., Parsonnet J., Longacre T.A. et al. CagA status of H. pylori infection an dp53 gene mutations in gastric adenocar­cinoma // Carcinogenesis. 2002. V. 23. № 3. P. 419-424.
  6. Resnick M.B., Gavilanez M., Newton E. et al. Claudin expression in gastric adenocarcinomas: a tissue microarray study with prognostic correlation // Hum. Pathol. 2005. V. 36. № 8. P. 886-892.
  7. Linder N., Haglund C., Lundin M. et al. Decreased xanthine oxidoreductase is a predictor of poor prognosis in early-stage gastric cancer // J. Clin. Pathol. 2006. V. 59. № 9. P. 965-971.
  8. Yamada Y., Arao T., Gotoda T. et al. Identification of prognostic biomarkers in gastric cancer using endoscopic biopsy samples // Cancer Sci. 2008. V. 99. № 11. P. 2193-2199.
  9. Li X., Zhang Y., Zhang Y. et al. Survival prediction of gastric cancer by a seven-microRNA signature // Gut. 2010. V. 59. № 5. P. 579-585.
  10. Liu R., Zhang C., Hu Z. et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis // Eur. J. Cancer. 2011. V. 47. № 5. P. 784-791.
  11. Tsujiura M., Ichikawa D., Komatsu S. et al. Circulating microRNAs in plasma of patients with gastric cancers // Br. J. Cancer. 2010. V. 102. № 7. P. 1174-1179.
  12. Buscaglia L.E., Li Y. Apoptosis and target genes of microRNA-21 // Chi. J. Cancer. 2011. V. 30. № 6. P. 371-380.
  13. Xu Y., Sun J., Xu J. et al. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer // Gastroenterol. Res. Pract. 2012. V. 2012. P. 1-5.
  14. Wang Y.Y., Ye Z.Y., Zhao Z.S. et al.Clinicopathologic significance of miR-10b expression in gastric carcinoma // Hum. Pathol. 2013. V. 44. № 7. P. 1278-1285.
  15. Kim K., Lee H.C., Park J.L. et al.Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer // Epigenetics. 2011. V. 6. № 6. P. 740-751.
  16. Kogo R., Mimori K., Tanaka F. et al. Clinical significance of miR-146a in gastric cancer cases // Clin. Cancer Res. 2011. V. 17. № 13. P. 4277-4284.
  17. Ueda T., Volinia S., Okumura H. et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis // Lancet Oncol. 2010. V. 11. № 2. P. 136-146.
  18. Nishida N., Mimori K., Fabbri M. et al.MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab // Clin. Cancer Res. 2011. V. 17. № 9. P. 2725-2733.
  19. He X.P., Shao Y., Li X.L. et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth // FEBS J. 2012. V. 279. № 22. P. 4201-4212.
  20. Zhang X., Yan Z., Zhang J. et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection // Ann. Oncol. 2011. V. 22. № 10. P. 2257-2266.
  21. Iorio M.V., Ferracin M., Liu C.G. et al. MicroRNA gene expression deregulation in human breast cancer // Cancer Res. 2005. V. 65. № 16. P. 7065-7070.
  22. Singh R., Mo Y.-Y. Role of microRNAs in breast cancer // Cancer Biol. Ther. 2013. V. 14. № 3. P. 201-212.
  23. Qian B., Katsaros D., Lu L. et al. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1 // Breast Cancer Res. Treat. 2009. V. 117. № 1. P. 131-140.
  24. Radojicic J., Zaravinos A., Vrekoussis T. et al. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer // Cell Cycle. 2011. V. 10. № 3. P. 507-517.
  25. Kong W., He L., Richards E.J. et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer // Oncogene. 2014. V. 33. № 6. P. 679-689.
  26. Sempere L.F., Christensen M., Silahtaroglu A. et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer // Cancer Res. 2007. V. 67. № 24. P. 11612-11620.
  27. Zhao Y., Deng C., Lu W. et al. let-7 microRNAs induce tamoxifen sensitivity by down regulation of estrogen receptor α signaling in breast cancer // Mol. Med. 2011. V. 17. № 11-12. P. 1233-1241.
  28. O-Day E., Lal A. MicroRNAs and their target gene networks in breast cancer // Breast Cancer Res. 2010. V. 12. № 2. P. 201-211.
  29. Gregory P.A., Bert A.G., Paterson E.L. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 // Nat. Cell Biol. 2008. V. 10. № 5. P. 593-601.
  30. Greene S.B., Herschkowitz J.I., Rosen J.M. Small players with big roles: microRNAs as targets to inhibit breast cancer progression // Curr. Drug. Targets. 2010. V. 11. № 9. P. 1059-1073.
  31. Seike M., Goto A., Okano T. et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 29. P. 12085-12090.
  32. Qi J., Mu D. MicroRNAs and lung cancers: from pathogenesis to clinical implications // Front Med. 2012. V. 6. № 2. P. 134-155.
  33. Acunzo M., Visone R., Romano G. et al.MiR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222 // Oncogene. 2012. V. 31. № 5. P. 634-642.
  34. Hayashita Y., Osada H., Tatematsu Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation // Cancer Res. 2005. V. 65. № 21. P. 9628-9632.
  35. Izzotti A., Calin G.A., Arrigo P. et al. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke // FASEB J. 2009. V. 23. № 3. P. 806-812.
  36. Takamizawa J., Konishi H., Yanagisawa K. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival // Cancer Res. 2004. V. 64. № 11. P. 3753-3756.
  37. Zhu W., Xu H., Zhu D. et al.miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP // Cancer Chemother. Pharmacol. 2012. V. 69. № 3. P. 723-731.
  38. Bandi N., Zbinden S., Gugger M. et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer // Cancer Res. 2009. V. 69. № 13. P. 5553-5559.
  39. Ranade A.R., Cherba D., Sridhar S. et al. MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer // J. Thorac. Oncol. 2010. V. 5. № 8. P. 1273-1278.
  40. Tian T., Shu Y., Chen J. et al.A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese // Cancer Epidemiol. Biomarkers Prev. 2009. V. 18. № 4. P. 1183-1187.
  41. Chin L.J., Ratner E., Leng S. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated increases non-small cell lung cancer risk // Cancer Res. 2008. V. 68. № 20. P. 8535-8540.
  42. Rotunno M., Zhao Y., Bergen A.W. et al. Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival // Br. J. Cancer. 2010. V. 103. № 12. P. 1870-1874.
  43. Michael M.Z., O\' Connor S.M., van Holst Pellekaan N.G. et al. Reduced accumulation of specific microRNAs in colorectal neoplasia // Mol. Cancer Res. 2003. V. 1. № 12. P. 882-891.
  44. Schee K., Fodstad O., Flatmark K. Micrornas as biomarkers in colorectal cancer // Am. J. Pathol. 2010. V. 177. № 4. P. 1592-1599.
  45. Schetter A.J., Okayama H., Harris C.C. The Role of microRNAs in solorectal sancer // Cancer J. 2012. V. 18. № 3. P. 244-252.
  46. Nagel R., le Sage C., Diosdado B. et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer // Cancer Res. 2008. V. 68. № 14. P. 5795-5802.
  47. Valeri N., Gasparini P., Fabbri M. et al. Modulation of mismatch repair and genomic stabilityby miR-155 // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 15. P. 6982-6987.
  48. Lanza G., Ferracin M., Gafà R. et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer // Mol. Cancer. 2007. V. 6. № 54. P. 1-11.
  49. Mosakhani N., Sarhadi V.K., Borze I. et al. MicroRNA profiling differentiates colorectal cancer according to KRAS status // Genes Chromosomes Cancer. 2012. V. 51. № 1. P. 1-9.
  50. Wu J., Wu G., Lv L., Ren Y.F. et al. MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1 // Carcinogenesis. 2012. V. 33. № 3. P. 519-528.
  51. Braun C.J., Zhang X., Savelyeva I. et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest // Cancer Res. 2008. V. 68. № 24. P. 10094-10104.
  52. Landi D., Gemignani F., Naccarati A. et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer // Carcinogenesis. 2008. V. 29. № 3. P. 579-584.
  53. Menon M.P., Khan A. micro-RNAs in thyroid neoplasms: molecular, diagnostic and therapeutic implications // J. Clin. Pathol. 2009. V. 62. № 11. P. 978-985.
  54. Tetzlaff M.T., Liu A., Xu X. et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues // Endocr. Pathol. 2007. V. 18. № 3. P. 163-173.
  55. Nikiforova M.N., Tseng G.C., Steward D. et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility // J. Clin. Endocrinol. Metab. 2008. V. 93. № 5. P. 1600-1608.
  56. Sheu S.Y., Grabellus F., Schwertheim S. et al. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours // Br. J. Cancer. 2010. V. 102. № 2. P. 376-382.
  57. Weber F., Teresi R.E., Broelsch C.E. et al. A limited set of human microRNA is deregulated in follicular thyroid carcinoma // J. Clin. Endocrinol. Metab. 2006. V. 91. № 9. P. 3584-3591.
  58. He H., Jazdzewski K., Li W. et al. The role of microRNA genes in papillary thyroid carcinoma // Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 52. P. 19075-19080
  59. Pallante P., Visone R., Ferracin M. et al. MicroRNA deregulation in human thyroid papillary carcinomas // Endocr. Relat. Cancer. 2006. V. 13. № 2. P. 497-508.
  60. Mian C., Pennelli G., Fassan M. et al. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome // Thyroid. 2012. V. 22. № 9. P. 890-896.
  61. Visone R., Pallante P., Vecchione A. et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas // Oncogene. 2007. V. 26. № 54. P. 7590-7595.
  62. Fuziwara C.S., Kimura E.T. MicroRNA Deregulation in Anaplastic Thyroid Cancer Biology // Int. J. Endocrinol. 2014. V. 2014. Article 743450.
  63. Mitomo S., Maesawa C., Ogasawara S. et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines // Cancer Sci. 2008. V. 99. № 2. P. 280-286.
  64. Frezzetti D., de Menna M., Zoppoli P. et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth // Oncogene. 2011. V. 30. № 3. P. 275-286.
  65. Yip L., Kelly L., Shuai Y. et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma // Ann. Surg. Oncol. 2011. V. 18. № 7. P. 2035-2041.
  66. Abraham D., Jackson N., Gundara J.S et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets // Clin. Cancer Res. 2011. V. 17. № 14. P. 4772-4781.
  67. Cahill S., Smyth P., Finn S.P. et al. Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model // Mol. Cancer. 2006. V. 5. Article 70.
  68. Lawrie C.H. MicroRNAs in hematological malignancies // Blood Rev. 2013. V. 27. № 3. P. 143-154.
  69. Bissels U., Bosio A., Wagner W. MicroRNAs are shaping the hematopoietic landscape // Haematologica. 2012. V. 97. № 2. P. 160-167.
  70. Cimmino A., Calin G.A., Fabbri M. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2 // Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 39. P. 13944-13949.
  71. Fabbri M., Bottoni A., Shimizu M. et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia // JAMA. 2011. V. 305. № 1. P. 59-67.
  72. Pekarsky Y., Santanam U., Cimmino A. et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181 // Cancer Res. 2006. V. 66. № 24. P. 11590-11593.
  73. Starczynowski D.T., Morin R., McPherson A. et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations // Blood. 2011. V. 117. № 2. P. 595-607.
  74. Starczynowski D.T., Kuchenbauer F., Argiropoulos B. et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype // Nat. Med. 2010. V. 16. № 1. P. 49-58.
  75. Bousquet M., Quelen C., Rosati R. et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation // J. Exper. Med. 2008. V. 205. № 11. P. 2499-2506.
  76. Chapiro E., Russell L.J., Struski S. et al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia // Leukemia. 2010. V. 24. № 7. P. 1362-1364.
  77. Bousquet M., Harris M.H., Zhou B. et al. MicroRNA miR-125b causes leukemia // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 50. P. 21558-21563.
  78. Agirre X., Jiménez-Velasco A., San José-Enériz E. et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth // Mol. Cancer Res. 2008. V. 6. № 12. P. 1830-1840.
  79. Bueno M.J., Pérez de Castro I., Gómez de Cedrón M. et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression // Cancer Cell. 2008. V. 13. № 6. P. 496-506.
  80. Venturini L., Battmer K., Castoldi M. et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells // Blood. 2007. V. 109. № 10. P. 4399-4405.
  81. Xu C., Fu H., Gao L. et al.BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia // Oncogene. 2014. V. 33. № 1. P. 44-54.
  82. Mi S., Lu J., Sun M. et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia // Proc. Natl. Acad. Sci. USA. 2007. V. 104. № 50. P. 19971-19976.
  83. Schotte D., De Menezes R.X., Akbari Moqadam F. et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia // Haematologica. 2011. V. 96. № 5. P. 703-711.
  84. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma // Haematologica. 2012. V. 156. № 6. P. 744-756.
  85. Dorsett Y., McBride K.M., Jankovic M. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation // Immunity. 2008. V. 28. № 5. P. 630-638.
  86. Costinean S., Zanesi N., Pekarsky Y. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice // Proc. Natl. Acad. Sci. USA. 2006. V. 103. №. 18. P. 7024-7029.
  87. Kluiver J., Poppema S., de Jong D. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas // J. Pathol. 2005. V. 207. № 2. P. 243-249.
  88. Eis P.S., Tam W., Sun L. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas // Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 10. P. 3627-3632.
  89. Lawrie C.H., Soneji S., Marafioti T. et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma // Int. J. Cancer. 2007. V. 121. № 5. P. 1156-1161.
  90. O\'Connell R.M., Chaudhuri A.A., Rao D.S., Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155 // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 17. P. 7113-7118.
  91. Yamanaka Y., Tagawa H., Takahashi N. et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia // Blood. 2009. V. 114. № 15. P. 3265-3275.
  92. Pedersen I.M., Otero D., Kao E. et al. Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas // EMBO Mol. Med. 2009. V. 1. № 5. P. 288-295.
  93. O\'Connell R.M., Rao D.S., Chaudhuri A.A. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder // J. Exper. Med. 2008. V. 205. № 3. P. 585-594.
  94. Roehle A., Hoefig K.P., Repsilber D. et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas // Br. J. Haematologica. 2008. V. 142. № 5. P. 732-744.
  95. Lawrie C.H., Chi J., Taylor S. et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma // J. Cell. Mol. Med. 2009. V. 13. № 7. P. 1248-1260.
  96. Pichiorri F., Suh S.S., Ladetto M. et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 35. P. 12885-12890.
  97. Löffler D., Brocke-Heidrich K., Pfeifer G. et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer // Blood. 2007. V. 110. № 4. P. 1330-1333.
  98. Wang X., Li C., Ju S. et al. Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation // Leuk. Lymphoma. 2011. V. 52. № 10. P. 1991-1998.
  99. Dimopoulos K., Gimsing P., Gronbaek K. Aberrant microRNA expression in multiple myeloma // Br. J. Haema­tologica. 2013. V. 91. № 2. P. 95-105.
  100. Chen R.W., Bemis L.T., Amato C.M. et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma // Blood. 2008. V. 112. № 3. P. 822-829.
  101. Deshpande A., Pastore A., Deshpande A.J. et al. 3\'UTR mediated regulation of the cyclin D1 proto-oncogenem // Cell Cycle. 2009. V. 8. № 21. P. 3584-3592.
  102. Rao E., Jiang C., Ji M. et al. The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation // Leukemia. 2012. V. 26. № 5. P. 1064-1072.
  103. Van Vlierberghe P., De Weer A., Mestdagh P. et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs // Br. J. Haematol. 2009. V. 147. № 5. P. 686-690.