350 rub
Journal №7 for 2014 г.
Article in number:
Influence of perinatal iron treatment on adipose tissue endocrine dysfunction in wistar rats in a model of diet-induced obesity
Authors:
A.A. Tinkov - Post-graduate Student, Department of Biochemistry, Orenburg State Medical Academy. E-mail: tinkov.a.a@gmail.com
E.V. Popova - Ph.D. (Med.), Associate Professor of Department of Biochemistry, Orenburg State Medical Academy. E-mail: pmvug@inbox.ru
V.S. Polyakova - Dr. Sc. (Med.), Professor, Head of Department of Pathologic Anatomy, Orenburg State Medical Academy. E-mail: profpolyakova@yandex.ru
A.A. Nikonorov - Dr. Sc. (Med.), Professor, Head of Department of Biochemistry, Orenburg State Medical Academy. E-mail: nikonorov_all@mail.ru
Abstract:
The purpose of the current study was to investigate the effect of perinatal iron treatment on adipose tissue dysfunction in rat offspring in a model of diet-induced obesity. The model was created using female Wistar rats mated with male rats, obtaining iron sulfate with drinking water during pregnancy and lactation (FePN) or pure drinking water (Control). The obtained offspring from both female groups was fed standard diet (STD) (Control-STD; FePN-STD) or high-fat diet (HFD) (Control-HFD; FePN-HFD) from the 4th week of age. It is estimated that perinatal iron treatment along with HFD-feeding significantly increased epididimal and retroperitoneal adipose tissue mass. Increase in liver nonheme iron content by 15 and 48 % in FePN-STD and FePN-HFD rats indicated the efficiency of the model used. Adipose tissue iron content was also increased, however, this elevation was not significant. Perinatal iron treatment potentiated adipokine and cytokine disbalance induced by HFD-feeding. FePN-HFD animals were characterized by a nearly twofold increase in serum leptin levels in comparison to HFD-controls. Adiponectin to leptin ratio was decreased twofold in the abovementioned group of animals. Perinatal iron treatments along with postnatal HFD-consumption led to a significant increase in tumor necrosis factor-α (TNFα) an interleukine-6 (IL-6) levels when compared to the HFD-control group. It is estimated that perinatal iron treatment both in STD and HFD-fed animals induced significant changes in adipose tissue oxidative stress biomarkers compared to the respective control groups. Despite the fact that the HFD-feeding in the trigger mechanism in adipogenesis, analysis of variance (ANOVA) indicated a significant impact of perinatal iron treatment on adipose tissue endocrine dysfunction, proinflammatory and prooxidant changes. Generally, the results indicate that perinatal iron treatment has a significant impact on postnatally diet-induced adipose tissue dysfunction. However, the observed effect realizes only in the case of HFD-feeding.
Pages: 40-48
References

  1. Avczy'n A.P., Zhavoronkov A.A., Rish M.A., Strochkova L. Mikroe'lementozy' cheloveka. M.: Mediczina. 1991. 496 s.
  2. Volchegorskij I.A., Dolgushin I.I., Kolesnikov O.L., Cejlikman V.E'. E'ksperimental'noe modelirovanie i laboratornaya oczenka adaptivny'x reakczij organizma. Chelyabinsk: Izdatel'stvo Chelyabinskogo gosudarstvennogo pedagogicheskogo universiteta. 2000. 167 s.
  3. Men'shikova E.B., Lankin V.Z., Zenkov N.K., Bondar' I.A., Krugovy'x N. F., Trufakin V.A. Okislitel'ny'j stress: antioksidanty' i prooksidanty'. M.: Firma «Slovo». 2006. 556 s.
  4. Nikonorov A.A., Tin'kov A.A., Zheleznov L.M., Ivanov V.V. Metodicheskij podxod k izucheniyu ozhireniya v e'ksperimente. Orenburg: Juzhny'j Ural. 2013. 238s.
  5. Blüher M. Adipose tissue dysfunction in obesity // Exp. Clin. Endocrinol. Diabetes. 2009. V. 117. № 6. P. 241-50.
  6. Cancello R., Clément K. Is obesity an inflammatory illness - Role of low-grade inflammation and macrophage infiltration in human white adipose tissue // BJOG. 2006. V. 113. № 10. P. 1141-1147.
  7. Chen S.J., Yen C.H., Huang Y.C., Lee B.J., Hsia S., Lin P.T. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome // PLoS One. 2012. V. 7. № 9. P. e45693.
  8. Christie W.W. Preparation of lipid extracts from tissues // Adv. Lipid Methodol. 1993. V. 2. P. 195-213.
  9. Dongiovanni P., Ruscica M., Benedan L., Borroni V., Recalcati S., Steffani L., Passafaro L., Cairo G., Magni P., Gatti S., Fargion S., Valenti L. Dietary iron overload induces visceral adipose tissue insulin resistance and hyper-resistinemia, and synergizes with obesity and fatty liver in inducing systemic insulin resistance // Digestive and Liver Disease. 2011. V. 43. P. 97.
  10. Farooqi I.S., O'Rahilly S. Leptin: a pivotal regulator of human energy homeostasis // Am. J. Clin. Nutr. 2009. V. 89. № 3. P. 980-984.
  11. Frederich R.C., Hamann A., Anderson S., Löllmann B., Lowell B.B., Flier J.S. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action // Nat. Med. 1995. V. 1. № 12. P. 1311-1314.
  12. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome // J.Clin. Invest. 2004. V. 114. № 12. P. 1752-1761.
  13. Hu M.L. Measurement of protein thiol groups and glutathione in plasma // Methods Enzymol. 1994. V. 233. P. 380-385.
  14. Inoue M., Maehata E., Yano M., Taniyama M., Suzuki S. Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type 2 diabetes // Metabolism. 2005. V. 54. № 3. P. 281-286.
  15. Jomova K., Baros S., Valko M. Redox active metal-induced oxidative stress in biological systems // Transition Metal Chemistry. 2012. V. 37. № 2. P. 127-134
  16. KeaneyJ.F.Jr., Larson M.G., Vasan R.S., Wilson P.W., Lipinska I., Corey D., Massaro J.M., Sutherland P., Vita J.A., Benjamin E.J. Framingham Study. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study // Arterioscler.Thromb. Vasc. Biol. 2003. V. 23. № 3. P. 434-439.
  17. Kim R.S., LaBella F.S. Comparison of analytical methods for monitoring autoxidation profiles of authentic lipids // J. Lipid. Res. 1987. V. 28. № 9. P. 1110-1117.
  18. Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins // Methods Enzymol. 1990. V. 186. P. 464-478.
  19. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent // J. Biol. Chem. 1951. V. 193. P. 265-275.
  20. Maeda N., Shimomura I., Kishida K., Nishizawa H., Matsuda M., Nagaretani H., Furuyama N., Kondo H., Takahashi M., Arita Y., Komuro R., Ouchi N., Kihara S., Tochino Y., Okutomi K., Horie M., Takeda S., Aoyama T., Funahashi T., Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30 // Nat. Med. 2002. V. 8. № 7. P. 731-737.
  21. Matsuzawa-Nagata N., Takamura T., Ando H., Nakamura S., Kurita S., Misu H., Ota T., Yokoyama M., Honda M., Miyamoto K., Kaneko S. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity // Metabolism. 2008. V. 57. № 8. P. 1071-1077
  22. Maury E., Brichard S.M. Adipokinedysregulation, adipose tissue inflammation and metabolic syndrome // Mol. Cell. Endocrinol. 2010. V. 314. № 1. P. 1-16.
  23. Munzberg H. Leptin-signaling pathways and leptin resistance // Forum Nutr. 2010. V. 63. P. 123-32.
  24. Nishimura S., Manabe I., Nagai R. Adipose tissue inflammation in obesity and metabolic syndrome // Discov Med. 2009.Vol. 8. № 41. P. 55-60.
  25. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction // Anal. Biochem. 1979. V. 95. № 2. P. 351-358.
  26. Rebouche C.J., Wilcox C.L., Widness J.A. Microanalysis of non-heme iron in animal tissues // J. Biochem. Biophys. Methods. 2004. V. 58. № 3. P. 239-251.
  27. Rhee S.D., Sung Y.Y., Lee Y.S., Kim J.Y., Jung W.H., Kim M.J., Lee M.S., Lee M.K., Yang S.D., Cheon H.G. Obesity of TallyHO/JngJ mouse is due to increased food intake with early development of leptin resistance // Exp. Clin. Endocrinol. Diabetes. 2011. V. 119. № 4. P. 243-251.
  28. Soares A.F., Guichardant M., Cozzone D., Bernoud-Hubac N., Bouzaïdi-Tiali N., Lagarde M., Géloën A. Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes // Free Radic. Biol. Med. 2005. V. 38. № 7. P. 882-889.
  29. Tajima S., Ikeda Y., Sawada K., Yamano N., Horinouchi Y., Kihira Y., Ishizawa K., Izawa-Ishizawa Y., Kawazoe K., Tomita S., Minakuchi K., Tsuchiya K., Tamaki T. Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice // Am. J. Physiol. Endocrinol. Metab. 2012. V. 302. P. 77-86.
  30. Taylor B.A., Phillips S.J. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling // Genomics. 1996. V. 34. № 3. P. 389-398.
  31. Toni R., Malaguti A., Castorina S., Roti E., Lechan R.M. New paradigms in neuroendocrinology: relationships between obesity, systemic inflammation and the neuroendocrine system // J. Endocrinol. Invest. 2004. V. 27. № 2. P. 182-186.
  32. Woods S.C., D'Alessio D.A. Central control of body weight and appetite // J. Clin. Endocrinol. Metab. 2008. V. 93(11Suppl1). P. S37-S50.