350 rub
Journal №4 for 2014 г.
Article in number:
Spontaneous oligonucleotide invasion into (CA/TG)n-repeats as the base for their function as homologous recombination «hot spots»
Authors:
N.Yu. Karprchenko - Assistant Researcher, Department of Chemical Carcinogenesis, Blokhin Cancer Research Center RAMS, Moscow. E-mail: nojadg@mail.ru
V.K. Gasanova - Senior Researcher, Department of Chemical carcinogenesis, Blokhin Cancer Research Center RAMS, Moscow. E-mail: victoriag@inbox.ru
D.S. Naberezhnov - Post-graduate Student, Department of Chemical Carcinogenesis, Blokhin Cancer Research Center RAMS. E-mail: n41d23s05@gmail.com
N.G. Dolinnaya - Dr. Sc. (Chem.), Leading Researcher, Department of Chemistry, Lomonosov Moscow State University. E-mail: dolinnaya@hotmail.com
M.G. Yakubovskaya - Dr.Sc. (Med.), Head of Department of Chemical Carcinogenesis, Blokhin Cancer Research Center RAMS, Moscow. E-mail: mgyakubovskaya@mail.ru
Abstract:
The main goal of our investigation is the study of molecular mechanism of homologous recombination, the main pathway for double strand breaks repair. We have demonstrated spontaneous invasion of d(GT)10 - oligonucleotides into (CA/TG)n repeats of genomic pro- and eukaryotic DNA that confirms unique structural properties of this type microsatellites and explains their function as recombination «hot spots». A number of other repetitive sequence oligonucleotides do not invade into duplex DNA. Only a small portion of duplex DNA interacts with oligonucleotide d(GT)10 or d(CA)10 and this interaction does not restore after DNA-oligonucleotide complex removing.
Pages: 30-35
References

  1. Moynahan M.E., Jasin M. Mitotic homologous recombination maintains genomic stability and suppressestum origenesis // Nat. Rev. Mol. Cell. Biol. 2010. V. 11. № 3. Р. 196-207.
  2. Lasko D., Cavenee W., Nordenskjöld M. Loss of constitutional heterozygosity in human cancer // Annu Rev. Genet. 1991. V. 25. Р. 281-314.
  3. Tischfield J.A. Loss of heterozygosity or: how I learned to stop worrying and love mitotic recombination // Am. J. Hum. Genet. 1997. V. 61. № 5. Р. 995-999.
  4. Wahls W.P. Meiotic recombination hotspots: shaping the genome and insights into hypervariableminisatellite DNA change // Curr. Top. Dev. Biol. 1998. V. 37. Р. 37-75.
  5. Majewski J., Ott J. GT repeats are associated with recombination on human chromosome 22 // Genome Res. 2000. V. 10. № 8. Р. 1108-1114.
  6. Гасанова В.К., Ряднинская Н.В., Гайар К. и др. Встраивание комплементарных олигонуклеотидов в область (CA/TG)31- повторов линейных и кольцевых дуплексов ДНК // Молекулярная биология. 2010. V. 44. № 3. Р. 520-528.
  7. Johnston BH., Ohara W., Rich A. Stochastic distribution of a short region of Z-DNA within a long repeated sequence in negatively supercoiled plasmids // J. Biol. Chem. 1988. V. 263. № 10. Р. 4512-4515.
  8. Kaluzhny D., Shchyolkina A., Livshits M. et.al. A novel intramolecular G-quartet-containing fold of single-stranded d(GT) (8) and d(GT) (16) oligonucleotides // Biophys. Chem. 2009. V. 143. № 3. Р. 161-165.
  9. Thomas T.J., Messner R.P. A left-handed (Z) conformation of poly(dA-dC). poly(dG-dT) induced by polyamines // Nucleic. Acids. Res. 1986. V. 14. № (16). Р. 6721-6733.
  10. Li Y.C., Korol A.B., Fahima T. et. al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review // Mol. Ecol. 2002. V. 11 № 12. Р. 2453-2465.
  11. Schlötterer C. Evolutionary dynamics of microsatellite DNA // Chromosoma. 2000. V. 109. № 6. Р. 365-371.
  12. Levinson G., Gutman G.A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution // Mol. Biol. Evol. 1987. V. 4. № 3. Р. 203-221.
  13. Kunkel T.A., Bebenek K. DNA replication fidelity // Annu. Rev. Biochem. 2000. V. 69. № 497-529.
  14. Eckert K.A., Mowery A., Hile S.E. Misalignment-mediated DNA polymerase beta mutations: comparison of microsatellite and frame-shift error rates using a forward mutation assay // Biochemistry. 2002. V. 41. № 33. P. 10490-10498.