350 rub
Journal №3 for 2014 г.
Article in number:
Modulation of cytotoxic effects of doxorubicin by the iron oxide nanoparticlesn
Authors:
T.A. Fedotcheva - Dr. Sc. (Med.), Senior Research Scientist, Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow. Е-mail: tfedotcheva@mail.ru
V.A. Bykov - Academican RAMN and RAAS, Advisor of RAAS
K.M. Starostin - Post-graduate Student, Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow
K.E. Shirokih - Post-graduate Student, Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow
A.G. Akopdjanov - Senior Research Scientist, Senior Research Scientist, Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow
V.V. Banin - Dr. Sc. (Med.), Head of Department of Biotechnology, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (VILAR)
Abstract:
Multydrug resistance of cancer cells to chemotherapy is one of the most important problems in cancer treatment. Possible ways to overcome this phenomena are developing, among them the usage of ABC-transporters inhibitors. Such substances, which able to inhibit P-glycoprotein, for example, showed pronounced cytotoxity to normal cells, rich of mitochondria. Modern nanotechnologies introduce a new possibility to overcome multydrug resistance in cancer cells by conjugation of anticancer drugs with nanoparticles. Such a conjugates are possible to penetrate through cell membrane inside the cell. Among different metallic nanoparticles the most perspective for targeting the cancer cells are iron nanoparticles Fe3O4 (FeO×Fe2O3), due to its paramagnetic features and low toxity. In this article the basic of conjugate was iron nanoparticles Fe3O4 (FeO×Fe2O3) and anticancer drug doxorubicin. The size of nanoparticles was 5-9 nm, as shown by transmission electron microscopy. In cell viability test (MTT-test) on HeLa cells it was shown, that conjugates of iron nanoparticles and doxorubicin exceeded antiproliferative effect of doxorubicin in 1.5 times. The possible mechanism of this action is connected with increase in reactive oxygen spices production in cancer cells when iron and doxorubicin are react with oxygen in combination.
Pages: 41-44
References

  1. Fedotcheva T. A., Odinczova E. V., Banin V. V., Shimanovskij N. L. Farmakologicheskoe znachenie sopryazhennoj regulyaczii sistemy' mnozhestvennoj lekarstvennoj ustojchivosti i mitoxondrial'noj pory' gestagenami // Vestnik Rossijskogo Onkologicheskogo Nauchnogo Centra im. N. N. Bloxina RAMN. 2011. T. 4. S. 34-38.
  2. Zhang X., Wu X., Su P., Gao Y., Meng B, Sun Y, Li L, Zhou Z, Zhou G. Doxorubicin influences the expression of glucosylceramide synthase in invasive ductal breast cancer // PLoS One. 2012. V. 7. № 11. P. e48492.
  3. Xue X., Liang X.J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology // Chin. J. Cancer. 2012. V. 31. № 2. P. 100-109.
  4. Odinczova E.V., Fedotcheva T.A., Shimanovskij N.L., Banin V.V. Analiz czitotoksicheskoj i protivoopuxolevoj aktivnosti novogo otechestvennogo gestagena Buterola s pomoshh'yu test-sistemy' kul'tury' opuxolevy'x kletok cheloveka // Voprosy' biologicheskoj, mediczinskoj i farmaczevticheskoj ximii. 2012. № 1. S. 93-97.
  5. Gupta A.K., Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles // Biomaterials. 2005. V. 26. № 13. P. 1565-1573.
  6. Luczenko S.V., Al'Nazvani N., Fel'dman N.B., Katlinskij A.V., Severin S.E., Severin E.S., Pal'czev M.A. Protivoopuxolevy'e preparaty' napravlennogo dejstviya na osnove peptidny'x vektorov // Voprosy' biologicheskoj, mediczinskoj i farmaczevticheskoj ximii. 2005. № 1. S. 13-18.
  7. Skuridin S.G., Dubinskaya V.A., By'kov V.A., Evdokimov Ju.M. Biosensorny'e test-sistemy' dlya napravlennogo poiska genotoksikantov i oczenki bezopasnosti nanomaterialov // Voprosy' biologicheskoj, mediczinskoj i farmaczevticheskoj ximii. 2012. № 1. S. 98-105.
  8. Bhattacharyya S., Kudgus R. A., Bhattacharya R., Mukherjee P. Inorganic nanoparticles in cancr thereapy // Pharm. Res. 2011. №28(2). R. 237-259.
  9. Niu C., Wang Z., Lu G., Krupka T.M., Sun Y., You Y., Song W., Ran H., Li P., Zheng Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes // Biomaterials. 2013. V. 34. № 9. R. 2307-2317.
  10. Yoon H.Y., Saravanakumar G., Heo R., Choi S.H., Song I.C., Han M.H., Kim K., Park J.H., Choi K., Kwon I.C., Park K. Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy // J. Control Release. 2012. V. 160. № 3. R. 692-698.
  11. Kievit F.M., Wang F.Y., Fang C., Mok H., Wang K., Silber J.R., Ellenbogen R.G., Zhang M. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro // J. Control Release. 2011. V. 152. № 1. R. 76-83.
  12. Chen B., Sun Q., Wang X., Gao F., Dai Y., Yin Y., Ding J., Gao C., Cheng J., Li J., Sun X., Chen N., Xu W., Shen H., Liu D. Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells // Int. J. Nanomedicine. 2008. V. 3. № 2. R. 277-286.
  13. Petri-Fink A., Chastellain M., Juillerat-Jeanneret L., Ferrari A. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells // Biomaterials. 2005. V. 26. № 15. R. 2685-2694.
  14. Cole A.J., David A.E., Wang J., Galban C.J., Hill H.L., Yang V.C. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting // Biomaterials. 2010. V. 32. № 8. R. 2183-2193.
  15. Akopdzhanov A.G., Sergeev A.I., Manvelov E'.V., Semejkin A.V., Naumenko V.Ju., Panov V.O., By'kov I.V., Shimanovskij N.L. Farmakologicheskie svojstva nanochasticz slozhnogo oksida zheleza kak substanczii magnitno-rezonansnogo kontrastnogo sredstva // E'ksperimental'naya i klinicheskaya farmakologiya. 2010. T. 73. № 6. S. 23-28.
  16. Shimanovskij N.L., Akopdzhanov A.G. Nanochasticzy' oksida zheleza: fizicheskie i farmakologicheskie svojstva. Saarbrucken: LAP Lamberts Academic Publishing. 2012.
  17. Nogueira D.R., Mitjans M., Infante M.R., Vinardell M.P. Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications // Int. J. Pharm. 2011. V. 420. № 1. R.51-58
  18. Banin V.V. Mexanizmy' obmena vnutrennej sredy'. M.: Izd. RGMU. 2000. 276 s.
  19. Karathanasis E., Chan L.., Karumbaiah L, McNeeley K., D'Orsi C. J. Tumor vascular permeability to a nanoprobe correlates to tumor-specific expression levels of angiogenic markers // PLoS ONE. 2009. V. 4. № 6. P. 5843.
  20. Fedotcheva N.I., Bykov V.A., Banin V.V., Fedotcheva T.A., Rzheznikov V.M., Shimanovskii N.L. Thiol - dependent sensitization of mitochondria and tumor cells to doxorubicin // J. Clin. Toxic. 2011. V. 8. № 7. http://dx.doi.org/ 10.4172/2161-0495.S7-002.