350 rub
Journal №11 for 2014 г.
Article in number:
Influence of free and bound nitric oxide on properties of erythrocytes aldehyde dehydrogenase
Authors:
A.K. Martusevich - Ph.D. (Med.), Senior Research Scientist, Experimental Medicine Department, Nizhny Novgorod Research Institute of Traumatology and Orthopaedics. E-mail: cryst-mart@yandex.ru
A.G. Soloveva - Ph.D. (Biol.), Senior Research Scientist, Experimental Medicine Department, Nizhny Novgorod Research Institute of Traumatology and Orthopaedics. E-mail: cryst-mart@yandex.ru
S.P. Peretyagin - Dr.Sc. (Med.), Professor, Senior Research Scientist, Experimental Medicine Department, Nizhny Novgorod Research Institute of Traumatology and Orthopaedics. E-mail: cryst-mart@yandex.ru
Abstract:
The aim of this work is estimation of effects and its mechanisms of gaseous nitric oxide and dinitrosyl iron complexes (DNIC) on catalytic activity of aldehyde dehydrogenase. Materials and methods. We estimated the influence of different doses of free (NO concentration in gas flow - 20, 50, 100 and 800 ppm) and bounded (3 mM of DNIC) nitric oxide on aldehyde dehydrogenase activity and erythrocyte level of malone aldehyde in vitro. Results. It was observed that blood processing with gaseous nitric oxide from different NO-generators caused the moderate inhibition of aldehyde dehydrogenase activity and minimal levation of malonic dialdehyde level. Use of DNIC low doses (lesser than 0,3 mcmol) led to dose-dependent stimulation of enzyme catalytic. Increasing of DNIC dose activated aldehyde dehydrogenase lesser clear, than its low doses. Conclusion. It was stated that erythrocyte aldehyde dehydrogenase is very sensitive to exogenic nitric oxide in gaseous phase and DNIC water solutions. We fixed that modification of aldehyde dehydrogenase activity by nitric oxide is dose dependent.
Pages: 60-65
References
  1. Chen Z., Foster M.W., Zhang J., Mao L., Rockman H.A., Kawamoto T., et al. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation // PNAS. 2005. V. 102. № 34. P. 12159-12164.
  2. Fung H.L. Biochemical mechanism of nitroglycerin action and tolerance: is this old mystery solved - // Annu. Rev. Pharmacol. Toxicol. 2004. V. 44. P. 67-85.
  3. Mayer B., Beretta M. The enigma of nitroglycerin bio­activation and nitrate tolerance: news, views and troubles // British Journal of Pharmacology. 2008. V. 155. P. 170-184.
  4. Lang B.S., Gorren A.C., Oberdorfer G., et al. Vascular bio­activation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry // J. Biol. Chem. 2012. V. 287. № 45. P. 38124-38134.
  5. Wenzl V.M., Beretta M., Griesberger M., et al. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation // Molec. Pharm. 2011. V. 80. № 2. P. 258-266.
  6. de la Lande I.S., Stepien J.M., Philpott A.C., et al. Aldehyde dehydrogenase, nitric oxide synthase and superoxide in ex vivo nitrate tolerance in rat aorta // Eur J. Pharmacol. 2004. V. 496. № 1-3. P. 141-149.
  7. DeMaster E.G., Redfern B. Quast B.J., et al. Mechanism for the inhibition of aldehyde dehydrogenase by nitric oxide // Alcohol. 1997. V. 14. № 2. P. 181-189.
  8. Szabó C., Southan G.J., Thiemermann C., Vane J.R. The mechanism of the inhibitory effect of polyamines on the induction of nitric oxide synthase: role of aldehyde metabolites // Br. J. Pharmacol. 1994. V. 113. № 3. P. 757-766.
  9. Dimmeler S., Lottspeich F., Brune B. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-hosphate dehydrogenase // J. Biol. Chem. 1992. V. 267. P. 16771-1674.
  10. McDonald L.J., Moss J. Pleiotropic effects of nitric oxide on ADP-ribosylation, covalent binding of NAD, and catalytic activity of glyceraldehyde-3-phosphate and aldehyde dehydrogenases // Trans. Assoc. Am. Physicians. 1993. V. 106. P. 155-161.
  11. Ванин А.Ф. Оксид азота в биомедицинских исследованиях // Вестник РАМН. 2000. № 4. С. 3-5.
  12. Ванин А.Ф., Писаренко О.И., Студнева И.М. и др. Действие динитрозильного комплекса железа на метаболизм и клеточные мембраны ишемизированного сердца крысы // Кардиология. 2009. № 12. С. 43-49.
  13. Мартусевич А.К., Соловьева А.Г., Перетягин С.П. Влияние свободного и депонированного оксида азота на энергетический метаболизм крови // Современные технологии в медицине. 2013. Т. 5. № 4. С. 33-38.
  14. Мартусевич А.К., Соловьева А.Г., Перетягин С.П., Диденко Н.В. Анализ влияния оксида азота на физико-химические параметры крови invitro // Врач-аспирант. 2013. № 2. С. 218-222.
  15. Martusevich A.K., Peretyagin S.P., Soloveva A.G., Vanin A.F. Estimation of some molecular effects of gaseous nitrogen oxide on human blood in vitro // Biophysics. 2013. V. 58. № 5. P. 689-692.
  16. Голиков П.П., Николаева Н.Ю., Гавриленко И.А. Оксид азота и перекисное окисление липидов как фактор эндогенной интоксикации при неотложных состояниях // Патологическая физиология и экспериментальная терапия. 2000. № 2. С. 6-9.
  17. Koppaka V., Thompson D.C., Chen Y., et al. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application // Pharmacol. Rev. 2012. V. 64. № 3. P. 520-539.
  18. Tsou P.-S., Page N.A., Lee S.G., et al. Differential metabolism of organic nitrates by aldehyde dehydrogenase 1a1 and 2: substrate selectivity, enzyme inactivation, and active cysteine sites // The AAPS Journal. 2011. V. 13. № 4. P. 548-555.
  19. Мартусевич А.К., Соловьева А.Г., Перетягин С.П., Митрофанов В.Н. Оценка влияния некоторых физических факторов на энергетический метаболизм крови invitro // Биомедицина. 2013. № 1. С. 103-108.
  20. Godoy L., Gonzalez-Duarte R., Albalat R. S-Nitrosoglu­tha­thione reductase activity of amphioxus ADH3: insights into the nitric oxide metabolism // Int. J. Biol. Sci. 2006. V. 2. № 3. P. 117-124.