350 rub
Journal №10 for 2014 г.
Article in number:
Nanoparticle based drugs in clinical practice: achievements and prospects
Authors:
N.V. Rukosueva - Assistent, Lomonosov Moscow State University of Fine Chemical Technologes. E-mail: nata1i@list.ru
D.A. Bezrukov - Ph.D. (Chem.), Lomonosov Moscow State University of Fine Chemical Technologes. E-mail: biotech@list.ru
A.P. Kaplun - Dr.Sc. (Chem.), Professor, Lomonosov Moscow State University of Fine Chemical Technologes. E-mail: alexander.p.kaplun@gmail.com
V.I. Shvets - Dr.Sc. (Chem.), Academician RAS, Professor, Lomonosov Moscow State University of Fine Chemical Technologes. E-mail: bt@mitht.ru
Abstract:
Most of the currently known drugs have several drawbacks that limit their use in clinical practice. The low solubility in aqueous environments, toxicity, loss of stability when introduced into the body, circulation of a short time, poor pharmacokinetics and unselective distribution can lead to several undesirable effects (loss of optimum therapeutic activity, dose-dependent effects ets.). One way of improving existing drugs is the conclusion of the active substance in a certain shell. Today there is a wide range of the supramolecular structures used as carriers of drug substances, including liposomes, mixed micelles, emulsions, polymer, ceramic and solid lipid nanoparticles, dendrimers, and cyclodextrins. This review is focused on clinically used nanopartically based drugs and drugs in various stages of clinical trials. Particular attention is paid to technologies producing encapsulated forms.
Pages: 3-21
References

  1. Slingerland M., Guchelaar H-J, Gelderblom H.. Liposomal drug formulation in cancer therapy: 15 years along the road // Drug Discovery Today. 2011. V. 17. №. 3/4. P. 160-166.
  2. Bawa R. Nanjparticle-based therapeutics in humans: a survey // Nanotecnology law and Business. 2008. V. 5. № 2. P. 135-155.
  3. Zevak E.G., Ogienko A.G., Boldy'reva E.V., Boldy'rev V.V., Manakov A.Ju., Ogienko A.A., My's' S.A., Junoshev A.S., Kutaev N.V., Krasnikov A.A. Ispol'zovanie sistem s klatraobrazovaniem dlya polucheniya vy'sokodispersnogo ibuprofena // Tezisy' dokladov uchastnikov IV nauch.-texn. konf. «Naukoemkie ximicheskie texnologii ? 2011». S. 72.
  4. Duncan R., Gaspar R. Nanjmedicine(s) under the microscope // Mol. Pharmaceutics. 2011. V. 8. № 6. P. 2101-2141.
  5. Webster D., Sundaram P., Byrne M. Injectable Nanomaterials for Drug Delivery: carriers, targeting moieties and Therapeutics // Eur. J. Pharm. Biopharm. 2013. V. 84. № 1. P. 1-20.
  6. Sawant R., Torchilin V. Challenges in Development of Targeted Liposomal Therapeutics // AAPS Journal. 2012. V. 14. № 2. P. 81-85.
  7. Puri A., Loomis K., Smith B., Lee J.-H., Yavlovich A., Heldman E.R. Blumenthal. Lipid-based nanoparticles as pharmaceutical drug carries from concepts to clinic // Crit. Rev. Drug Carrier Syst. 2009. V. 26. № 6. P. 523-580.
  8. URL: http://www.fda.gov
  9. URL:http://www.medicines.org.uk/EMC/medicine/26275/SPC/Epaxal
  10. URL:http://www.rlsnet.ru/mnn_index_id_99.htm#farmakologiya
  11. URL:http://www.vidal.ru/poisk_preparatov/doxorubicin-teva.htm
  12. Collins Y., Lele S. Long-term pegylated liposomal doxorubicin use in recurrent ovarian carcinoma. // J. Natl. Med. Assoc. 2005. V. 97. P. 1414-1416.
  13. Green A., Rose P. Pegylated liposomal doxorubicin in ovarian cancer // Int. J. Nanomedicine. 2006. V. 1. № 3. P. 229-239.
  14. Thigpena J., Aghajanianb C., Albertsc D., Camposd S., Gordone A., Markmanf M., McMeeking D., Monkh B., Rose P. Role of pegylated liposomal doxorubicin in ovarian cancer // Gynecol. Oncol. 2005. V. 96. P. 10-18.
  15. Park J. Liposome-based drug delivery in breast cancer treatment. // Breast Cancer Res. 2002. V. 4. P. 95-99.
  16. URL: http://www.fda.gov/ohrms/dockets/ac/01/slides/ 3763s2_08_martin/sld019.htm
  17. URL: http://www.medicines.org.uk/emc/medicine/5945
  18. URL: http://www.fda.gov/ohrms/dockets/ac/01/slides/ 3763s2_08_martin/sld028.htm
  19. URL http://www.fda.gov/ohrms/dockets/ac/01/slides/ 3763s2_08_martin/sld028.htm
  20. URL: http://www.rlsnet.ru/mnn_index_id_456.htm
  21. URL: http://www.drugs.com/pro/daunoxome.html
  22. Petre C., Dittmer D. Liposomal daunorubicin as treatment for Kaposi-s sarcoma // Int. J. Nanomedicine. 2007. V. 2. № 3. P. 277-288.
  23. Adis International Limited. Vincristine Liposomal - INEX: Lipid-Encapsulated Vincristine, Onco TCS, Transmembrane Carrier System - Vincristine, Vincacine, Vincristine Sulfate Liposomes for Injection, VSLI // Drugs in R&D. 2004. V. 5. № 2. 2004. P. 119-123.
  24. URL: http://www.rlsnet.ru/mnn_index_id_522.htm
  25. Mantripragada S. A lipid based depot (DepoFoam technology) for sustained release drug delivery // Prog. Lipid Res. 2002. V. 41. P. 392-406.
  26. Angst M., Drover D. Pharmacology of drugs formulated with DepoFoam: a sustained release drug delivery system for parenteral administration using multivesicular liposome technology // Clin Pharmacokinet. 2006. V. 45. № 12. P. 1153-1229.
  27. Marcato P., Duran N. New Aspects of Nanopharmaceutical Delivery Systems. // J. Nanoscie. Nanotechnol. 2008. V. 8. P. 1-14.
  28. Brion A., Legrand F., Larosa F., Schillinger F., Garnache-Ottou F., Helias P., Fontan J., Heczko M., Delaby P., Daguindau E., Vuillier J., Chauchet A., Deconinck E. Intrathecal liposomal cytarabine (lipoCIT) administration in patients with leukemic or lymphomatous meningitis: efficacy and long-term safety in a single institution // Invest New Drugs. 2012. V. 30. № 4. P. 1697-1702.
  29. URL: http://www.rlsnet.ru/mnn_index_id_334.htm
  30. Zimm S., Collins J.., Miser J. Cytosine arabinoside cerebrospinal fluid kinetics // Clin. Pharmacol. Ther. 1984. V. 35. P. 826-856.
  31. URL: http://www.rlsnet.ru/mnn_index_id_984.htm
  32. Nagle P., Gerancher J. DepoDur® (extended-release epidural morphine): a review of an old drug in a new vehicle // Tech. Reg. Anesth. Pain Manage. 2007. V. 11. P. 9-18.
  33. Pasero C., McCaffery M. Extended-Release Epidural Morphine (DepoDur?) // J. Perianesth. Nurs. 2005. V. 20. P. 345-350.
  34. Christie J., Kompella U. Ophtalmic light sensitive nanocarrier systems // Drug Discov. Today. 2008. V. 13. P. 124-134.
  35. Boswell G., Buell D., Bekersky I. AmBisome (Liposomal Amphotericin B): A Comparative Review // J. Clin. Pharmacol. 1998. V. 38. P. 583-592.
  36. Ben-Shimol S., Sagi O., Schwartz E., Greenberg D. Cutaneous leishmaniasis treated with ambisome (liposomal amphotericin B) // Harefuah. 2012. V. 151. № 8. P. 458-460, 498.
  37. Xiong Y.-Q., Kupferwasser L., Zack P., Bayer A. Comparative Efficacies of Liposomal Amikacin (MiKasome) plus Oxacillin versus Conventional Amikacin plus Oxacillin in Experimental Endocarditis Induced by Staphylococcus aureus: Microbiological and Echocardiographic Analyses // Antimicrob Agents Chemother. 1999. V. 43. № 7. P. 1737-1742.
  38. URL: http://www.crucell.com/Technology_-_Virosome_ Technology_-_Description
  39. Wilschut J. Influenza vaccines: The virosome concept // Immunol. Letters. 2009. V. 122. P. 118-121.
  40. URL: http://www.crucell.com/Products-Epaxal
  41. URL: http://www.crucell.com/Products-Inflexal_V
  42. Zamparo E., Little D. Immunogenicity and effectiveness of virosomal adjuvanted vaccines against influenza: a brief review of their utility in the elderly population // J Prev. Med. Hyg. 2011. V. 52. № 3. P. 116-119.
  43. URL:http://www.baxter.at/downloads/aerzte_und_patienten/infomaterial/baxter_vaccines_epaxal_product_monograph.pdf
  44. URL: http://optimapharm.com.ua/img/InflexalV_booklet.pdf
  45. Musacchio T., Torchilin V. Recent developments in lipid-based pharmaceutical nanocarriers // Front Biosci. (Landmark Ed). 2011. V. 1. № 16. P. 1388-1412.
  46. URL:http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm-fuseaction=Search.Label_ApprovalHistory#apphist
  47. URL: http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm-archiveid=41233
  48. URL: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm - id=6780
  49. Tamilvanan S. Formulation of multifunctional oil-in-water nanosized emulsions for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body // Int. J. Pharmaceutics. 2009. V. 381. P. 62-76.
  50. Rajpoot P., Pathak K., Bali V. Therapeutic applications of nanoemulsion based drug delivery systems: a review of patents in last two decades // Recent Pat. Drug Deliv. Formul. 2011. V. 5. № 2. P. 163-172.
  51. Aguilar J., Rodriguez E. Vaccine adjuvants revisited // Vaccine. 2007. V. 25. P. 3752-3762.
  52. Zhirovy'e e'mul'sii v parenteral'nom pitanii. Materialy' kongressa Evropejskoj assocziaczii e'nteral'nogo i parenteral'nogo pitaniya v 2004 g. // Xirurgiya. T. 7. № 2.
  53. Akkar A., Muller R.H. Formulation of intravenous Carbamazepine emulsions by SolEmuls technology // Eur. J. Pharm. Biopharm. 2003. V. 55. P. 305-312.
  54. Kam E., Abdul-Latif M., McCluskey A. Comparison of Propofol-Lipuro with propofol mixed with lidocaine 10 mg on propofol injection pain // J. Anesth. 2004. V. 59. P. 1167-1169.
  55. URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/ 2001/19627S35LBL.pdf
  56. Lee W., Shenoy D., Sheel R. Micellar Nanoparticles: Applications for Topical and Passive Transdermal Drug Delivery // Handbook of Non-Invasive Drug Delivery Systems. 2010 Elsevier Inc. P. 37-58.
  57. URL: http://www.accessdata.fda.gov/drugsatfda_docs/ label/ 2003/21371_estrasorb_lbl.pdf
  58. URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/ 2003/050625s030lbl.pdf
  59. Puig B., González V. MF59-adjuvanted subunit influenza vaccine: an improved interpandemic influenza vaccine for vulnerable populations // Expert Rev. Vaccines. 2007. V. 6. № 5. P. 659-665.
  60. Banzhoff A., Pellegrini M., Del Giudice G., Fragapane E., Groth N., Podda A. MF59-adjuvanted vaccines for seasonal and pandemic influenza prophylaxis // Influenza Other Respi Viruses. 2008 V. 2. № 6. P. 243-252.
  61. Vogel F., Caillet C., Kusters I., Haensler J. Emulsion-based adjuvants for influenza vaccines // Expert Rev. Vaccines. 2009. V. 8. № 4. P. 483-492.
  62. URL: http://www.peelregion.ca/flu/downloads/2011-pdfs/fluad.pdf
  63. Yue L., Pengcheng X., Dianrui Z., Qiang Z. A mini review of nanosuspensions development // J. Drug Targeting. 2012. V. 20. № 3. P. 209-223.
  64. Shen L., Lin Wu F.. Nanomedicines in renal transplant rejection - focus on sirolimus // Int. J. Nanomedicine. 2007. V. 2. № 1. P. 25-32.
  65. Chingunpituk J. Nanosuspension. Technology for Drug Delivery // Walailak J Sci & Tech. 2007. V. 4. № 2. P. 139-153.
  66. Wua Y., Loperb A., Landisb E., Hettricka L., Novaka L., Lynna K., Chenc C., Thompsona K., Higginsd R., Batrad U., Shelukard S., Kweia G., Storeye D. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human // Int. J. Nanomedicine. 2004. V. 285. P. 135-146.
  67. Deschamps B., Musaji N., Gillespie J. Food effect on the bioavailability of two distinct formulations of megestrol acetate oral suspension // Int. J. Nanomedicine. 2009. V. 4. P. 185-192.
  68. URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/ 2005/021778lbl.pdf
  69. Jain S., Hirst D.G., O-sullivan J.M. Gold nanoparticles as novel agents for cancer therapy // The Brit. J. Radiology. 2012. V. 85. P. 101-113.
  70. Lodhia J., Mandarano G., Ferris N.J. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI // Biomed. Imaging Interv. J. 2010. V.6. № 2. P. 125-134.
  71. Medina H., El-Sayed M. Dendrimers as Carriers for Delivery of Chemotherapeutic Agents // Chem. Review. 2009. V. 109. P. 3141-3157.
  72. URL: http://www.starpharma.com/vivagel
  73. URL: http://www.clinicaltrials.gov