350 rub
Journal №9 for 2013 г.
Article in number:
The study of the biological activity of metal nanoparticles
Authors:
E.V. Yausheva - Post-graduate student, SSI All-Russian Scientific Institute beef cattle RAAS, Orenburg, Russia. E-mail: vasilena56@mail.ru S.A. Miroshnikov - Dr.Sc. (Biol.), Professor, Director of SSI All-Russian Scientific Institute beef cattle RAAS, Orenburg, Russia. E-mail: inst_bioelement@mail.ru E.A. Sizova - Dr.Sc. (Biol.), Associate Professor, Department of General Biology, Orenburg State University, Orenburg, Russia. E-mail: Sizova.L78@yandex.ru A.S. Vasilchenko - Ph.D. (Biol.). Senior Lecturer, Department of Biochemical Physics, Orenburg State University, Orenburg, Russia. E-mail: Avasilchenko@gmail.com
Abstract:
The experiment studied the physical and biological properties of sols and suspensions of iron nanoparticles in water. Ultrasound effect on the dispersion system containing a chemically treated water and the iron nanoparticles is accompanied by fragmentation of agglomeration of the particles. Their size decreases with 103 associations associatios nanoparticles associations after 1 minute of exposure to 101-102 nanoparticles after 3-5 min. After 15 and 30 min. exposure system is a homogeneous liozol. In the calculations it was found that ultrasound is a powerful tool for influencing the agglomerates and the first 5 min. almost 100-fold reduces the amount of nanoparticles within them. In general, the observed destruction of the agglomerates by reducing the number of nanoparticles comprising from 103 to 101 nanoparticles (r = 0,68). In the experiment on the model Echerichia coli K12 TG1 with cloned genes luxCDABE-natural luminescent microorganism Photobacterium leiongnathi 54D10) evaluated the inhibition of bacterial bioluminescence prototypes. It is shown that the expression of biological activity of the samples is observed only when using a higher concentration with decreasing particle size of the audience up to 80 nm, although the magnitude of performance was not significant, indicating that the benefit of understanding of the iron nanoparticles as biogenic elements. In the 2-point ultrasound exposure time (9 and 15 min.) Nanoparticles with approximately equal size are characterized by different rates of biological activity. This difference is probably due to the influence of this parameter, the concentration of individual nanoparticles. With increasing duration of exposure of samples to 9 minutes. specific content of individual nanoparticles is increased to 75 % and is characterized by expression of the activity of nanoparticles. The manifestation of biological activity is observed only in 14, 15 and 30 min. sonication, which corresponds to the presence of nanoparticles with the specific content of 90% or more. The result was revealed that depending on the biological activity of the samples of iron on the dimension of the agglomerates and the specific content of nanoparticles in the sample.
Pages: 54-59
References

  1. Bogoslovskaya O.A., Sizova E.A., Polyakova V.S., Miroshnikov S.A., Lejpunskij I.O., Ol'xovskaya I.P., Glushhenko N.N. Izuchenie bezopasnosti vvedeniya nanochasticz medi s razlichny'mi fiziko-ximicheskimi xarakteristikami v organizm zhivotny'x // Vestnik Orenburgskogo gosudarstvennogo universiteta. 2009. № 2. S. 124-127.
  2. Glushhenko N.N., Bajtukalov T.A., Bogoslovskaya O.A., Ol'xovskaya I.P. Ranozazhivlyayushhie svojstva lekarstvenny'x sredstv na osnove nanochasticz metallov // Materialy' nauchno-prakticheskoj konferenczii s mezhdunarodny'm uchastiem «Nanotexnologii i nanomaterialy' dlya biologii i medicziny'». Novosibirsk. 2007. Ch. 2. S. 76-80.
  3. Deryabin D.G., Aleshina E.S., Deryabina T.D., Efremova L.V. Biologicheskaya aktivnost' ionov, nano- i mikrochasticz Su i Fe v teste ingibirovaniya bakterial'noj biolyuminesczenczii // Voprosy' biologicheskoj, mediczinskoj i farmaczevticheskoj ximij. 2011. № 6. S. 31-36.
  4. Pavlov G.V., Zhelankin R.V., Arsent'eva I.P., Okpattax-Godvin A.K., Arsent'ev A.A. Mul'tidiscziplinarny'j podxod k izucheniyu biologicheskoj aktivnosti nanochasticz metallov // Konstrukczii iz kompoziczionny'x materialov. 2007. № 3. S. 20-24.
  5. Panichkin L.A., Rajkova A.P. Ispol'zovanie nanoporoshkov metallov dlya predposevnoj obrabotki semyan s.-x. kul'tur // Izvestiya Timiryazevskoj sel'skoxozyajstvennoj akademii. 2009. № 1. S. 59-65.
  6. Churilov G.I. Vliyanie nanoporoshkov zheleza, medi, kobal'ta v sisteme pochva - rastenie // Vestnik Orenburgskogo gosudarstvennogo universiteta. 2009. № 12. S. 148-151.
  7. Xasanov O.L., Dvilis E'.S., Polisadova V.V., Zy'kova A.P. E'ffekty' moshhnogo ul'trazvukovogo vozdejstviya na strukturu i svojstva nanomaterialov. Tomsk: Izd-vo Tomskogo politexnicheskogo universiteta. 2008. 149 s.
  8. Ximicheskaya e'ncziklopediya. T. 2. M.: Sovetskaya e'ncziklopediya. 1990. S. 80-82.
  9. Kratkaya ximicheskaya e'ncziklopediya. T. 2. M.: Sovetskaya e'ncziklopediya. 1963. S. 110.
  10. MU 1.2.2634-10 «Mikrobiologicheskaya i molekulyarno-geneticheskaya oczenka vozdejstviya nanomaterialov na predstavitelej mikrobioczenoza». M.: Federal'ny'j Centr gigieny' i e'pidemiologii Rospotrebnadzora. 2010.
  11. Chatterjee S., Bandyopadhyay A., Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application // Journal of Nanobiotechnology. 2011. V. 9. № 34. S. 1-7.
  12. Gen M.Ja., Miller A.V. Avtorskoe svidetel'stvo SSSR № 814432. Byulleten' izobretenij. 1981. № 11. S. 25.