350 rub
Journal №9 for 2013 г.
Article in number:
Development of extraction and purification procedure for inulinase from helianthus tuberosus tubers and analysis of its physicochemical and kinetical properties
Authors:
M.G. Holyavka - Ph.D. (Biol.), The Research Associate of Biophysics and Biotechnology Department, The Voronezh State University, Voronezh, Russia. E-mail: holyavka@rambler.ru T.A. Kovaleva - Dr. Sc. (Biol.), The Voronezh State University, Professor of Biophysics and Biotechnology Department, Voronezh, Russia. E-mail: tamara_kovaleva@inbox.ru E.A. Hrupina - Student, The Voronezh State University, Voronezh,Russia V.G. Artyukhov - Dr. Sc. (Biol.), Professor, The Head of Biophysics and Biotechnology Department, The Voronezh State University, Voronezh, Russia. E-mail: artyukhov@bio.vsu.ru V.N. Kalaev - Dr. Sc. (Biol.), Professor, The Voronezh State University, Voronezh, Russia
Abstract:
Purification technique to a homogeneous condition for inulinase from Helianthus tuberosus tubers and results of research for its physical, chemical and kinetic properties are presented in this article. It is established, that among extracting substances used by us (the distilled water, the acetate buffer (рН 4.5 and 5.5), sodium chloride (5 and 10 %) and sodium hydroxide (0.1 M)) for inulinase from Helianthus tuberosus tubers 10 % of NaCl appeared the most perspective. The enzyme extracting at 37 ºС during 1 hour was an optimum combination of temperature and incubation time. Comparing inulinase activity in Helianthus tuberosus tubers in various seasons, we came to conclusion, that it shows higher catalytic ability in February-April, than in October-December (when inulin concentration in tubers is maximum). It is interesting also, that inulinase activity in the sprouted tubers several times above, than that are at rest. It is revealed, that for inulinase sedimentation it is possible to use acetone and isopropanol in a proportion 1:3 and 1:4. Ethanol is less perspective for this enzyme. Results of experiments showed, that inulinase sedimentation is most expedient to carry out in a range of ammonium sulfate concentration from 35-40 up to 60 %. Application of ammonium sulfate raised extent of inulinase purification only in 1.4 times, therefore we considered as inexpedient a combination of sedimentation stage by acetone and sedimentation by ammonium sulfate stages and left only the first of them. For release of enzymes from low-molecular impurity we used gel chromatography on sephadex G-25. The ion-exchange chromatography on DEAE-cellulose was the following stage of inulinase purification. At first, we carried out an elution by the acetate buffer (рН 4.7) in steps in NaCl concentration range of 0.005-0.2 mol/l. The inulinase fraction left by one peak at salt concentration of 0.025-0.05 mol/l. Further we made experiments on inulinase purification by the method of an ion-exchange chromatography on DEAE- cellulose in a рН gradient 8.0-4.0. As a elution result 4 fractions, possessing of inulinase activity, were received. Calculation of I/S relations for enzymes 4 fractions, received by us, allows to argue, that only 3 are inulinase. We named them conditionally inulinase I, inulinase II and inulinase III. Thus, in our laboratory the technique for allocation and purification to a homogeneous condition for three inulinase fractions (I, II and III) from Helianthus tuberosus was developed: purification extent and exit respectively 55.7 and 5.4 % (I), 28.9 and 3.1 % (II), 21.6 and 1.9 % (III). On electrophoregrams, received by Davies's modified method, we observed the existence of one strip, that testifies to homogeneity of enzymes fractions, which for this reason can be used for the further analysis. It is revealed, that inulinase I has an activity optimum at 48 °С, inulinase II - at 39 °С, and inulinase III - at 44 °С. It is established, that the curve of specific activity dependence from values of substrate рН for inulinase I has a maximum at рН 6.8, for inulinase II at рН 6.2, and for inulinase III - at рН 4.5. It is shown, that optimum of substrate concentration for all three enzymes is the 5×10-4 mol/l. The analysis of kinetic curves for dependence of V(S) showed, that the greatest affinity to inulin shows inulinase I. Proceeding from the received results, it is possible to conclude that all types of inulinases are quite suitable for use in the industrial purposes, therefore the choice of this or that enzyme should be caused, first of all, by conditions of production and features in `the technological line.
Pages: 43-52
References

  1. Bhat P.G, Pattabiraman T.N. Separation & purification of an invertase and an inulase from germinating garlic (Allium sativum L.) bulbs // Indian J. Biochem. Biophys. 1980. V. 17. № 5. P. 338-343.
  2. Wagner W., Wiemken A. Properties and subcellular localization of fructan hydrolase in the leaves of barley (Hordeum vulgare L. cv. Gerbel) // J. Plant Physiol. 1986. V. 123. P. 429-439.
  3. Henson C.A. Purification and properties of barley stem fructan exohydrolase // J. Plant. Physiol. 1989. V. 134. P. 186-191.
  4. Bonnett G.D, Simpson R.J. Fructan-hydrolyzing activities from Lolium rigidum Gaudin fructan-hydrolyzing activities from Lolium rigidum Gaudin // New Phytol. 1993. V. 123. P. 443-451.
  5. Henson C.A., Livingston D.P. Purification and characterization of an oat fructan exohydrolase that preferentially hydrolyzes β-2,6 fructans // Plant Physiol. 1996. V. 110. P. 639-644.
  6. Marx S.P., Nosberger J., Frehner M. Hydrolysis of fructan in grasses: a β-(2,6)-linkage specific fructan-β-fructosidase from stubble of Lolium perenne // New Phytol. 1997. V. 135. P. 279-290.
  7. Marx S.P., Nosberger J., Frehner M. Seasonal variation of fructan-β-fructosidase (FEH) activity and characterization of a β-(2,1)-linkage specific FEH // New Phytol. 1997. V. 135. P. 267-277.
  8. Henson C.A., Livingston D.P. Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages // Plant Physiol. 1998. V. 36. P. 715-720.
  9. Van Den Ende W., Michiels A., De Roover J., Verhaest P., Van Laere A. Cloning and functional analysis of chicory root fructan 1-exohydrolase I (1-FEH I): a vacuolar enzyme derived from a cell-wall invertase ancestor - Mass fingerprint of the 1-FEH I enzyme // The Plant J. 2000. V. 24. № 4. P. 447-456.
  10. Van Den Ende W., Michiels A., D. Van Wonterghem, Vergauwen R., Van Laere A. Cloning, developmental, and tissue-specific expression of sucrose:sucrose 1-fructosyl transferase from Taraxacum officinale: fructan localization in roots // Plant Physiol. 2000. V. 123. P. 71-80.
  11. Van Den Ende W., Michiels A., Van Wonterghem D., Clerens S., De Roover J., Van Laere A. Defoliation induces 1-FEH II (fructan 1-exohydrolase II) in witloof chicory roots: cloning and purification of two isoforms (1-FEH IIa and 1-FEH IIb). Mass fingerprint of the 1-FEH II enzymes // Plant Physiol. 2001. V. 126. P. 1186-1195.
  12. Van Den Ende W., Michiels A., De Roover, J., Van Laere A. Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases: expression of fructan genes throughout chicory development // Sci. World J. 2002. V. 2. P. 1273-1287.
  13. Van Laere A., Van den Ende W. Inulin metabolism in dicots: chicory as a model system // Plant Cell Environ. 2002. V. 25. P. 803-815.
  14. Hamdy H. Purification and some important characters of extracellular inulinase of Alternaria alternata (Fr.) // Indian J. Exp. Biol. 2002. V. 40. № 12. P. 1393-1398.
  15. Laoux D., Delcour J., Vandenhaute J. Purification and partial characterization of the inulinase of Klyveromyses fragilis // Arch. Int. Physiol. et Biochim. 1989. V. 97. № 6. P. 161-165.
  16. Ohta K., Suetsugu N., Nakamura T. Purification and properties of an extracellular inulinase from Rhizopus sp. strain TN-96 // J. of Bioscience and Bioengineering. 2002 V. 94, № 1. P. 78-80.
  17. Kushi R.T., Monti R., Contiero J. Production, purification and characterization of an extracelular inulinase from Kluyveromyces marxianus var. bulgaricus // J. Indust. Microbiol. Biotechnol. 2000. V. 25. P. 63-69.
  18. Jing W., Zhengyu J., Bo J., Xueming X. Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris // Curr. Microbiol. 2003. V. 47, № 2. P. 109-112.
  19. Moriyama S., Akimoto H., Suetsugu N., Kawasaki S., Nakamura T., Ohta K. Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene // Biosci. Biotechnol. Biochem. 2002. V. 66. № 9. P. 1887-1896.
  20. Chi Z., Chi Z., Zhang T., Liu G., Yue L. Inulinase-expressing microorganisms and applications of inulinases // Appl. Microbiol. Biotechnol. 2009. V. 82. № 2. P. 211-220.
  21. Ermakov A.I., Arasimovich V.V., Jarosh N.P. Metody' bioximicheskogo issledovaniya rastenij. L.: Agropromizdat. 1987. 429 s.
  22. Nesterenko M.V., Tilley M., Upton S.J. A simple modification of Blums silver stain method allows for 30 minute detection of protein in polyacrilamide gel // J. Biochem. Biol. 1994. V. 28. P. 239.
  23. Belozerskij A.N. Prakticheskoe rukovodstvo po bioximii rastenij. M.: Sov. nauka. 1951. 388 s.
  24. Vullo D.L., Coto C.E., Sinerizz F. Characteristics of an inulinase produced by Bacillus subtilis 430A, a strain isolated from the rhizosphere of Vernonia herbacea (Vell Rusby) // Appl. Environ. Microbiol. 1991. V. 57. № 8. P. 2392-2394.
  25. Balayan A.M., Pivazyan L.A., Xachaturyan R.N., Afrikyan E'.G., Abelyan V.A. Inulinazy' Penicillium palitans i Penicillium cyclopium // Bioximiya. 1996. T. 61. № 5. S. 895-902.
  26. Zherebczov N.A., Korneeva O.S., Terty'chnaya T.N. . O mexanizme rasshhepleniya β-2,1-fruktozidny'x svyazej inulina inulazoj Aspergillus awamoti 2250 // Bioximiya. 1995. T. 60, № 10. S. 1580-1588.
  27. Rouwenhorst R.J., Hensing M., Verbakel J., Scheffers W.A., Dijken J.P. Structure and properties of the extracellular inulinase of Kluyveromyces marxianus CBS 6556 // Appl. Envirion. Microbiol. 1990. V. 56. № 11. P. 3337-3345.
  28. Arand M., Golubev A.M., Neto J.R., Polikarpov I., Wattiez R., Korneeva O.S., Eneyskaya E.V., Kulminskaya A.A., Shabalin K.A., Shishliannikov S.M., Chepurnaya O.V., Neustroev K.N. Purification, charaterization, gene cloning and preliminary X-ray data of the exo-inulase from Aspergillus awamori // Biochem. J. 2002. V. 362. P. 131-135.
  29. Vandamme E.J., Derycke D.G. Microbial inulinases: fermentation process, properties, and applications // Adv. Appl. Microbiol. 1983. V. 29. P. 139-176.
  30. Van der Ende W., Clerens S., Vergauwen R., Van Riet L., Van Laere A., Yoshida M., Kawakami A. Fructan 1-exohydrolases. β-(2,1)-trimmers during graminan biosynthesis in stems of wheat - Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms // Plant Physiology. 2003. V. 131. P. 621-631.
  31. Zherebczov N.A., Shelamova S.A., Abramova I.N. Biosintez inulinaz bakteriyami roda Bacillus // Prikladnaya bioximiya i mikrobiologiya. 2002. T. 38. № 6. S. 634-638.
  32. Uhm T.B., Jeon D.Y., Byun S.M., Hong J.S., Grootwassink J.W. Purification and properties of β-fructofuranosidase from Aspergillus niger // Biochim. Biophys. Acta. 1987. V. 926. P. 119-126.
  33. Abelyan V.A., Manukyan L.S. Xarakteristika e'kzo-inulaz Kluyveromyces marxianus i Bacillus licheniformis // Bioximiya. 1996. T. 61, № 6. S. 1028-1036.
  34. Kovaleva T.A. Fiziko-ximicheskie i kinetiko-termodinamicheskie aspekty' kataliza svobodny'mi i immobilizovanny'mi amilazami : dis. - d-ra biol. nauk : 03.00.02 : zashhishhena 21.10.98 : utv. 1.04.99 / g. Voronezh. 1998. 421 s.
  35. Gupta A.K., Rathore P., Kaur N., Singh R. Production, thermal stability and immobilisation of inulinase from Fusarium oxysporum // J. Chem. Technol. and Biotechnol. 1990. V. 47. № 3. P. 245-257.
  36. Efstathious I., Reysset G., Truffaut N. A study of inulinase activity in the Clostridium acetobutylicum strain ABKn8 // Appl. Microbiol. Biotechnol. 1986. V. 25. № 2. P. 143-149.